Komponenten für Entladungslampen

Elektronische Vorschaltgeräte	84
Montageanleitung	85-98
Schaltbilder	89
Elektromagnetische Vorschaltgeräte	89
Leistungsreduzierung	90
Montageanleitung	94-97
Elektromagnetische Versorgungseinheiten	91
Montageanleitung	91 - 94
Schaltbilder – Elektromagnetische Vorschaltgeräte	98-100
Fassungen für Hochdruckentladungslampen	101–102
Zündgeräte	102-104
Montageanleitung	105 - 107
Leistungsumschalter	108-110
Umschalteinheiten	110-111
Lampentabelle	112-122
Energieeffizienz-Klassifizierung	123
Allgemeine technische Hinweise	366-374
Glossar	375-377

Wird der elektrische Strom in einer Entladungslampe gesteigert, so entsteht im Entladungsgefäß ein Entladungskanal mit sehr hoher Leuchtdichte. Lichtstrom und Lichtausbeute nehmen deutlich zu. Der Innendruck im Entladungsgefäß steigt und liegt bei 1 bis 10 bar, man spricht von einer Hochdruckentladungslampe (allgemein Entladungslampe). Lichtausbeute und Farbwiedergabe von Hochdrucklampen sind je nach Lampenfamilie stark unterschiedlich.

Zum Betrieb von Entladungslampen sind Vorschaltgeräte erforderlich. Bei Natriumdampf- und Halogen-Metalldampflampen werden außerdem auch Zündgeräte benötigt. Zur Kompensation des Blindstroms beim Einsatz
von magnetischen Vorschaltgeräten sind darüber hinaus Kompensationskondensatoren erforderlich. Die Fixierung der Lampen in den Leuchten und die Sicherstellung eines einfachen Austauschs von Lampen am Lebensdauerende werden durch die Fassungen gewährleistet.

Vorschaltgeräte stabilisieren den Arbeitspunkt der Lampe und beeinflussen die Lampenleistung, den Lampenlichtstrom, die Systemlichtausbeute, die Lebensdauer der Lampen sowie die Farbtemperatur des Lichts.

In den nachfolgenden Kapiteln werden die technischen Informationen zu VS-Komponenten für

Natriumdampf-Hochdrucklampen (HS-Lampen)
 Halogen-Metalldampflampen (HI-Lampen)
 Halogen-Metalldampflampen mit Keramikbrenner (C-HI-Lampen)
 Quecksilberdampf-Hochdrucklampen (HM-Lampen)
 Natriumdampf-Niederdrucklampen (LS-Lampen)

behandelt.

Für Hochdruckentladungslampen können elektromagnetische oder elektronische Vorschaltgeräte verwendet werden. Anders als bei Leuchtstofflampen wird der Wirkungsgrad der Lampen durch den Einsatz von elektronischen Vorschaltgeräten nicht entscheidend verändert. Dagegen werden die Eigenverluste bei elektronischen Vorschaltgeräten gesenkt und damit der Systemwirkungsgrad verbessert. Außerdem werden die Lampen durch elektronische Vorschaltgeräte schonender betrieben, damit verbunden ist eine Steigerung der Lampenlebensdauer.

Sowohl bei elektronischen als auch bei elektromagnetischen Vorschaltgeräten sind Varianten als unabhängige Vorschaltgeräte entwickelt worden, die dann als Versorgungseinheiten besondere Vorteile bei der Anwendung zeigen.

Elektronische Vorschaltgeräte für HI- und C-HI-Lampen

Elektronische Vorschaltgeräte enthalten alle notwendigen Komponenten, um Entladungslampen zu betreiben. Darüber hinaus schalten sie Lampen am Lebensdauerende sicher ab, so dass keine hohen Temperaturen in den Leuchten entstehen, die die Lebensdauer von Leuchten und Komponenten beeinflussen.

Durch die Verwendung des Zugentlastungsmoduls entstehen aus elektronischen VS-Einbau-Vorschaltgeräten unabhängige Betriebsgeräte, die z. B. als Versorgungseinheit genutzt und in dieser Ausführung auch in Zwischendecken eingesetzt werden können.

Montageanleitung für EVGs

Für den Einbau und die Installation von elektronischen Vorschaltgeräten für Hochdruckentladungslampen

Zu beachtende Vorschriften

DIN VDE 0100 Errichten von Niederspannungsanlagen
 EN 60598-1 Leuchten - Teil 1: Allgemeine Anforderungen und Prüfungen
 EN 61347-1 Geräte für Lampen - Teil 1: Allgemeine und Sicherheitsanforderungen
 EN 61347-2-12 Geräte für Lampen - Teil 2-12: Besondere Anforderungen an gleich- oder wechselstromversorgte elektronische Vorschaltgeräte für Entladungslampen (ausgenommen Leuchtstofflampen)
 EN 55015 Grenzwerte und Messverfahren für Funkentstörungen von elektrischen Beleuchtungseinrichtungen und ähnlichen Elektrogeräten
 EN 61000-3-2 Elektromagnetische Verträglichkeit (EMV) - Teil 3: Grenzwerte - Hauptabschnitt Teil 2: Grenzwerte

für Oberschwingungsströme (Geräte-Eingangsstrom bis einschließlich 16 A je Leiter)

Einrichtungen für allgemeine Beleuchtungszwecke - EMV-Störfestigkeitsanforderungen

Bezeichnungen für VS-EVG für Entladungslampen

Die Typenbezeichnungen für HID-Vorschaltgeräte von Vossloh-Schwabe sind wie nachfolgend beschrieben einheitlich aufgebaut:

EHXc	70	.326
Elektronisches Vorschaltgerät für HID-Lampen	Wattage	fortlaufende Nummer

Mechanische Montage

EN 61547

Auflage Feste und flächige Auflage zur guten Wärmeableitung notwendig, Montage auf Durchzügen vermeiden.

Einbauort Das EVG ist vor Feuchtigkeit und Hitze zu schützen. Einbau in Außenleuchten: Schutzart der Leuchte

für Wasserschutz > 4 (z. B. IP54 erforderlich)

Befestigung Mit Hilfe von 4-mm-Schrauben in den vorgesehenen Löchern

Wärmeübergang Beim Einbau in Leuchten ist für guten Wärmeübergang zwischen EVG und Leuchtengehäuse zu sorgen.

EVG mit max. möglichem Abstand zu Wärmequellen bzw. Lampen montieren. Während des Betriebs darf die Temperatur, gemessen am t_C-Punkt des Vorschaltgeräts, den vorgegebenen Grenzwert nicht überschreiten.

Zusatz für unabhängige elektronische Vorschaltgeräte

Einbaulage Beliebige Position unter Verwendung der Befestigungslaschen

Abstände Min. 0,10 m zu Wänden, Decken, Isolierungen

Min. 0,10 m zu weiteren elektronischen Vorschaltgeräten

Min. 0,25 m zu Wärmequellen (Lampe)

Auflage Fest, kein Einsinken in Isolierstoff

2

3

4

5

5

7

8

9

Technische Daten

Тур	Betriebsspannungs-	Schutz-	Mittlere	Leistungs-	Temperatur-	Mögliche A	nzahl an VS-Ge	eräten/Automate	entyp
	bereich	leiterstrom	Lebensdauer***	faktor	schutz*	B (10A)	B (16A)	C (10A)	C (16A)
	AC: 220 V240 V	mA	Std.	λ					
Standard EVG									
EHXc 35.325	±10%	≤ 0,5	32.000 (t _c 85 °C)	0,95	ja**	7	12	12	20
(183033;183034)			40.000 (t _c 80 °C)						
			50.000 (t _c 75 °C)						
EHXc 35.325	±10%	≤ 0,5	32.000 (t _c 80 °C)	0,95	ja	7	12	12	20
(183035)			40.000 (t _c 75 °C)						
			50.000 (t _c 70 °C)						
EHXc 35G.327	+6 -10%	≤ 0,5	30.000 (t _c 80 °C)	> 0,95	ja	7	12	12	20
EHXc 50.358	±10%	≤ 0,5	40.000 (t _c 80 °C)	0,95	ja**	7	12	12	20
EHXc 70.326	±10%	≤ 0,5	32.000 (t _c 80 °C)	0,95	ja**	7	12	12	20
(183036; 183037)			40.000 (t _c 75 °C)						
			50.000 (t _c 70 °C)						
EHXc 70.326	±10%	≤ 0,5	26.000 (t _c 75 °C)	0,95	ja	7	12	12	20
(183038)			40.000 (t _c 65 °C)						
			50.000 (t _c 60 °C)						
EHXc 100.353	±10%	< 2	50.000 (t _c 70 °C)	> 0,95	ja	4	6	6	11
EHXc 150G.334	+6 -10%	≤ 0,5	50.000 (t _c 75 °C)	> 0,98	ja	4	7	7	12

Zum Schutz vor unzulässiger Übertemperatur sind die Geräte mit einer Temperaturabschaltung ausgerüstet. Nach Abkühlung starten die Geräte wieder, gegebenenfalls muss die Versorgungsspannung kurzzeitig unterbrochen werden.

Leistungsmerkmale

Abschalten defekter Lampen

Bei nicht zündender Lampe oder bei Lampen mit einer erhöhten Brennspannung (Lebensdauerende) schaltet das EVG nach einer definierten Zeit (< 20 Min.) ab.

Abschaltung erfolgt auch, wenn die Lampe nicht die vorgegebene Nennleistung erreicht. Rücksetzen erfolgt durch Aus- und Wiedereinschalten der Netzspannung. Vor einem Lampenwechsel muss grundsätzlich eine Netztrennung durchgeführt werden.

EOL- Effekt

Bei Hochdruckentladungslampen äußert sich der End-of-Life-Effekt anhand einer Veränderung der Lampenspannung. Diese Veränderungen können z. B. durch einen undichten Brenner oder Gleichrichtereffekte entstehen. Durch die EOL-Abschaltung wird die sichere Trennung der Lampe am Lebensdauerende von der Versorgungsspannung gewährleistet. Die EOL-Abschaltung verhindert Überhitzungen der Lampensockel am Lebensdauerende der Lampen.

Kurzschlussfestigkeit

Die Ausgänge (zur Lampe) des EVG sind kurzschlussfest. Kurzschlüsse zwischen Lampenanschluss und Gehäuse (Schutzleiter) führen zur Zerstörung des EVG.

Temperaturschutz Zum Schutz vor unzulässiger Übertemperatur sind einige Geräte mit einer Temperaturschutzeinrichtung ausgerüstet. Nach Abkühlung starten die Geräte wieder, gegebenenfalls muss die Versorgungsspannung kurzzeitig unterbrochen werden. Eine Auflistung der Geräte, die mit einer Temperaturschutzeinrichtung ausgestattet sind, finden Sie in der oben stehenden Tabelle.

Schutz gegen transiente Netzüberspannungen

Werte nach EN 61547 (Störfestigkeit/Immunität) werden eingehalten.

Bei Geräten ohne Gehäusedeckel muss der Temperaturschutz in der Leuchte überprüft werden.

 $Voraussetzung \ zum \ Erreichen \ der \ mittleren \ Lebens dauer ist \ die \ Einhaltung \ der \ Grenztemperatur \ t_{c} \ max. \ am \ t_{c} Punkt; \ Ausfallrate = 0,2 \ \% \ pro \ 1000 \ Std.$

Elektrische Installation

Verdrahtung

- Verdrahtung zwischen Versorgungsnetz, EVG und Lampe muss nach dem zugehörigen Schaltbild erfolgen. Hinweis: Leuchtengehäuse (Metall) ist mit dem Schutzleiter zu verbinden.
- Die EVG-Erdung ist durch Zahnscheibe o. ä. vorzunehmen (Schutzklasse I, Einhaltung der Funkentstörung).
- Zur Einhaltung der Funkentstörgrenzwerte, Netzleitungen nicht mit Lampenleitungen parallel verlegen, auf max. Abstand und Belastungskapazität achten.
- Leuchten müssen nach dem Einbau von elektronischen Vorschaltgeräten auf Einhaltung der Grenzwerte nach EN 55015 geprüft werden.

Das Verbinden des Schutzleiters vom Vorschaltgerät durch Befestigung des Vorschaltgeräts auf Metallleitern, die mit dem Schutzleiter verbunden sind, ist erlaubt. Dabei ist zu beachten, dass ein ordnungsgemäßer Schutzleiterkontakt nach EN 60598 gewährleistet sein muss. Falls jedoch ein Vorschaltgerät eine Klemme mit Schutzleiteranschluss ohne Durchschleifung besitzt und diese zum Schutzleiteranschluss verwendet werden soll, darf diese nur für das Vorschaltgerät selbst verwendet

Steckklemmen

Die eingesetzten Klemmen können mit starren oder flexiblen Leitern, mit einem Querschnitt von 0,75-2,5 mm² (K35-Geräte: 0,5-1,5 mm²) kontaktiert werden. Die Abisolierlänge der Leitung beträgt 10-11 mm (K35-Geräte: 8,5-9,5 mm, K40/41- und M42-/M45-Geräte: 5-6 mm) für Klemmenraster 3,5 mm. Das Verzinnen von Leitern ist nicht zulässig.

Fehlerströme

Impulsstromfeste Fehlerstrom-Schutzeinrichtungen einsetzen. Leuchten auf die Phasen L1, L2, L3 verteilen, 3-phasige Fl-Schalter einsetzen. Soweit zulässig Fl-Schalter mit 30 mA Fehlerstrom installieren, max. 15 Leuchten anschließen, da FI-Schalter bei halbem Fehlerstrom-Nennwert auslösen können.

EVG-Leuchten im 3-Phasen-Netz

- Vor Inbetriebnahme von Neuanlagen: Überprüfung der Netzspannung auf Übereinstimmung mit dem EVG-Netzspannungsbereich (AC, DC).
- N-Leiter muss an alle Leuchten bzw. EVG ordnungsgemäß angeschlossen bzw. kontaktiert
- Leitungsverbindungen bzw. Leitungstrennungen dürfen nur im spannungsfreien Zustand erfolgen. Achtung: N-Leiter nie allein oder zuerst unterbrechen.
- Isolationswiderstandstest: von L nach PE (L und N dürfen nicht verbunden sein).
- Nach dem Test sicherstellen, dass der Neutralleiter wieder angeschlossen wird.

Elektromagnetische Verträglichkeit (EMV)

Das VS-EVG-Programm ist auf der Grundlage der gültigen EMV-Normen (Störaussendung, Störfestigkeit und Netzstromoberschwingungen) entwickelt und speziell auf die sichere Einhaltung der Grenzwerte abgestimmt. Dabei wird vorausgesetzt, dass die Hinweise zur Leitungsführung und Leitungslänge der Montageanleitungen der EVG beim Einbau in Leuchten bzw. bei unabhängigen Geräten beachtet wird.

Kompensation Leuchten mit EVG benötigen keine Kompensation (Leistungsfaktor ≥ 0,95).

Auswahl von Sicherungsautomaten

Dimensionierung von Sicherungsautomaten

Beim Einschalten der EVG entstehen durch das Aufladen von Kondensatoren hohe kurzzeitige Stromimpulse. Die Zündung der Lampen erfolgt fast gleichzeitig. Hier wird ebenfalls ein hoher Energiebedarf gefordert. Diese hohen Anlageeinschaltströme belasten die Leitungsschutzautomaten, die entsprechend ausgewählt und dimensioniert sein müssen.

Auslöseverhalten Das Automatenauslöseverhalten der Leitungsschutzautomaten wird nach VDE 0641 Teil 11 für B- und C-Charakteristik beschrieben.

Anzahl der EVG (vgl. Tabelle Seite 86)

Die max. Anzahl gilt für gleichzeitiges Einschalten. Angaben sind für einpolige Sicherungen, bei mehrpoligen reduziert sich die Anzahl um 20 %. Berücksichtigte Stromkreisimpedanz beträgt 400 m Ω (ca. 20 m Zuleitung [2,5 mm²] von der Netzeinspeisung bis zum Verteiler und weitere 15 m bis zur Leuchte). Verdopplung der Stromkreisimpedanz auf 800 m Ω erhöht die mögliche Anzahl der Vorschaltgeräte um 10 %.

Zusätzliche Hinweise

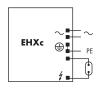
Hinweise zum Einbau von elektronischen Vorschaltgeräten hinsichtlich EMV-Optimierung Um eine gute Funkentstörung und größtmögliche Betriebssicherheit zu erhalten, sollten die folgenden Punkte beim Einbau von elektronischen Vorschaltgeräten beachtet werden:

- Leitungen zwischen EVG und Lampe kurz halten (Verringerung der elektromagnetischen Störeinflüsse)
- Netz- und Lampenleitungen sind getrennt und möglichst nicht parallel zu führen.
 Den Abstand zwischen Lampenleitungen und Netzleitungen möglichst groß wählen, wenn möglich > 5 cm (die Einkopplung von Störungen zwischen Netz- und Lampenleitungen wird vermieden).
- Netzleitung in der Leuchte kurz halten (Verringerung der Einkopplung von Störungen).
- Auf gute Erdung achten. Das EVG muss einen sicheren Kontakt zum Leuchtenblech haben oder über den PE-Anschluss geerdet werden. Dieser sollte als eigene Leitung ausgeführt sein, damit wird ein besseres Ableiten des Ableitstromes erreicht. Die EMV wird bei Frequenzen größer als 30 MHz günstiger.
- Netzleitung nicht zu dicht entlang des EVG oder der Lampen führen (dies gilt besonders bei der Durchgangsverdrahtung).
- Netzleitungen und Lampenleitungen nicht kreuzen. Können Kreuzungen nicht verhindert werden, dann sind sie möglichst rechtwinklig auszuführen.
- Leitungsdurchführungen durch Metallteile sollten nie ungeschützt, sondern immer mit einer Zusatzisolation (Isolierschlauch, Durchführungstülle) erfolgen.

Temperatur

Referenzpunkttemperatur t_c

Für die sichere Arbeitsweise elektronischer Vorschaltgeräte ist das Einhalten der maximal zulässigen Gehäusetemperatur am Messpunkt wichtig. Vossloh-Schwabe hat auf jedem EVG- Gehäuse den Gehäusetemperaturmesspunkt t_c max. bestimmt. An diesem t_c-Punkt darf die angegebene Grenztemperatur nicht überschritten werden, damit die Lebensdauer und die Sicherheit nicht eingeschränkt werden. Dieser Punkt wird festgelegt, indem das EVG unter Berücksichtigung der zulässigen Umgebungstemperatur (t_a), die auch auf dem Typenschild angegeben wird, in einem IEC-genormten Normalbetrieb getestet wird. Da sowohl die konstruktionsbedingte Umgebungstemperatur als auch die von der Anschlussleistung abhängige Eigenerwärmung variieren können, ist eine Überprüfung der Gehäusetemperatur am t_c-Punkt unter realen Einbaubedingungen erforderlich.


Umgebungstemperatur ta

Die Umgebungstemperatur beschreibt den zulässigen Temperaturbereich in der Leuchte und wird auf jedem EVG angegeben.

Zuverlässigkeit und Lebensdauer

Wird die Grenztemperatur am Referenzpunkt t_c (Angabe auf dem Typenschild des Vorschaltgeräts und in den technischen Unterlagen) eingehalten, ist mit der definierten Lebensdauer zu rechnen. Dabei wird ein Schaltzyklus von 165 Minuten ein und 15 Minuten aus angenommen. Lebensdauerangaben können der Tabelle auf Seite 86 entnommen werden.

Schaltungen von Halogen-Metalldampflampen (HI) und Natriumdampf-Hochdrucklampen (HS) mit elektronischen Vorschaltgeräten (EVG)

35G.327, 35.325, 50.358, 70.326, 150G.334

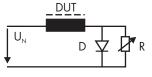
100.353

Elektromagnetische Vorschaltgeräte für Entladungslampen

Elektromagnetische Vorschaltgeräte für HI- und HS-Lampen

Da bei Halogen-Metalldampflampen (HI) und Natriumdampf-Hochdrucklampen (HS) die vom Lampenhersteller angegebenen Werte für Lampenstrom und Lampenspannung bei gleichen Lampenleistungen in der Regel identisch sind und die geforderten Impedanzen für das Vorschaltgerät auch gleiche Werte haben, können für beide Lampenarten häufig die gleichen Vorschaltgeräte eingesetzt werden. Zu beachten ist, dass HI-Lampen auf Abweichungen der Impedanz vom Nennwert mit empfindlichen Farbveränderungen reagieren. Deshalb stimmt Vossloh-Schwabe die Vorschaltgeräte auf die engeren Toleranzen der Lampen ab. Außerdem wird der vorgeschriebene maximale Gleichstromscheitelwert für HI-Lampen eingehalten. Dieser Wert wird bei HS-Lampen nicht angegeben. Hier darf lediglich ein maximaler Anlaufstrom nicht überschritten werden.


Um den Temperaturhaushalt der Leuchten und die elektrischen Werte der Lampen in tolerierbaren Grenzen zu halten, muss die Impedanz der Vorschaltgeräte über die gesamte Lebensdauer gleich bleiben. Diese Forderung wird durch eine sogenannte Lebensdauerprüfung (Prüfung der thermischen Dauerhaftigkeit) nachgewiesen.


In Bezug auf die thermische Überprüfung nehmen HI- und HS-Lampen eine Sonderrolle ein. Am Lebensdauerende der Lampen mit Außenkolben kann in seltenen Fällen ein Sicherheitsrisiko auftreten. Das Sicherheitsrisiko wird durch den sogenannten Gleichrichtereffekt der Lampen hervorgerufen und kann unzulässig hohe Erwärmungen von Vorschaltgeräten, Zündgeräten, Fassungen und Leitungen und somit die Zerstörung der Leuchte zur Folge haben. Vor diesem Hintergrund ist die Leuchten-Norm EN 60598-1 "Leuchten; Teil 1: Allgemeine Anforderungen und Prüfungen" um Prüfungen zu diesem Sicherheitsrisiko ergänzt worden. Danach dürfen seit dem 1. September 2002 nur noch Leuchten in Verkehr gebracht werden, die die neuen Bestimmungen einhalten, d. h. die Erwärmung der Leuchten für diesen Fehlerfall muss durch einen Temperaturschutz begrenzt sein.

Empfehlenswert ist in diesem Zusammenhang die Verwendung von VS-Vorschaltgeräten mit Temperaturschalter, die bereits mit dieser Schaltung getestet wurden.

Elektromagnetische Vorschaltgeräte für HM-Lampen

Das Vorschaltgerät darf bei großen Netzschwankungen (92-106 % der Nennspannung) eine vom Lampenhersteller vorgegebene Leerlaufspannung nicht unter- bzw. einen festgelegten Kurzschlussstrom nicht überschreiten. Der Anlaufstrom sollte so hoch ausfallen, dass innerhalb von 15 Minuten mindestens 90 % der Lampenbrennspannung erreicht sind.

DUT Geräte unter Test
D Diode, 100 A, 600 V
R Widerstände, 0...200
(1/2 Lampenleistung)
UN 110 % der
Nennspannung

6

7

8

9

Leistungsreduzierung bei HS- und HM-Lampen

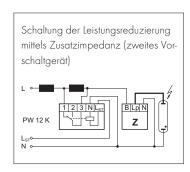
Eine Reduzierung der Lampenleistung kann durch eine höhere Impedanz des Vorschaltgeräts, höher als die Nennwerte, erreicht werden. Dabei müssen die Vorgaben der Lampenhersteller eingehalten werden, um die Lampenlebensdauer nicht zu reduzieren. Die Lampen sollen mit der empfohlenen Nennimpedanz des Vorschaltgeräts gestartet und erst nach einer Zeit von mindestens fünf Minuten auf den reduzierten Betrieb umgeschaltet werden.

Die Veränderung der Impedanz kann durch die Einschaltung eines zusätzlichen Vorschaltgeräts (aufwändige Variante) oder durch umschaltbare Vorschaltgeräte (kostengünstige Variante) erreicht werden. Die Umschaltung kann durch moderne zeitgesteuerte elektronische Leistungsumschalter, die über eine zusätzliche Steuerleitung (230 V) angesteuert werden, oder durch Leistungsumschalter mit konstanter Zeitvorgabe (keine Steuerleitung) erfolgen.

Leistungsumschalter mit Steuerleitung unterscheiden sich in ihrem Aufbau nach der gewählten Variante der Impedanzerhöhung.

Leistungsreduzierung mit umschaltbaren Vorschaltgeräten

Vorschaltgeräte-Typ	Geprüft mit	Netzspannung	Systemleistung	Reduzierte	Systemleistung	Reduzierter Lichtstrom
	Osram-Lampe	V, Hz	100 % (W)	W	%	% (ca. Werte)
U-NaHJ 70/40%	HS 70	230, 50	83	50	60	55
U-NaH 100/40%	HS 100	230, 50	114	67	58	55
U-NaH 150/40%	HS 150	230, 50	160	98	61	55
U-NaH 250/40%	HS 250	230, 50	271	150	55	50
U-NaH 400/250.805	HS 400	230, 50	421	253	60	50
Q 80/50.596	HM 80	230, 50	90	55	61	55
Q 125/80.611	HM 125	230, 50	134	89	65	55
U-Q 250/150.438	HM 250	230, 50	274	164	60	55
U-Q 400/250.437	HM 400	230, 50	422	267	65	55


Beispiel: freibrennende Osram-Lampe, Typ NAV, HQL


Anlaufschalter

Hochdrucklampen haben eine Anlaufkurve. Der volle Lampenlichtstrom steht erst nach einer Anlaufzeit zur Verfügung. Bei Netzunterbrechungen ist diese Anlaufzeit von der Lampentemperatur abhängig. Ist bei sicherheitsrelevanten Anwendungen für diese Anlaufzeiten eine zusätzliche Lichtquelle gewünscht oder gefordert, kann mit Hilfe von Anlaufschaltern eine Hilfslampe eingeschaltet werden. Es werden zwei Arten von Anlaufschaltern unterschieden:

- AS 1000 K für Überlagerungszündsysteme Hier erfolgt eine Überwachung der Lampenbrennspannung. Liegt diese unter einem definierten Wert (ca. 60 % des Lampenlichtstroms) wird eine Hilfslampe zugeschaltet.
- AS 1000 K A10 für Pulserzündsysteme und elektronische Vorschaltgeräte
 Bei der A10-Variante wird die Hilfslampe nach einer vorgegebenen Zeit (10 Min.) abgeschaltet,
 in dieser Zeit hat die Hochdrucklampe das erwünschte Lichtniveau erreicht.

Lampenfamilie	Typische Anlaufzeit	Typische Wiederanlaufzeit (Netzunterbrechung bei Lampenbetriebstemperatur)
HS	3 Min.	5 Min.
HI / C-HI	3 Min.	10 Min.
HM	4 - 5 Min.	4 - 5 Min.
LS	10 Min.	5 Min.

Versorgungseinheiten für Hochdruckentladungslampen

Mit elektromagnetischen Vorschaltgeräten

Versorgungseinheiten mit elektromagnetischen Vorschaltgeräten für Natriumdampf-Hochdrucklampen (HS), Halogen-Metalldampflampen (HI) und Halogen-Metalldampflampen mit Keramikbrennern (C-HI) sind mit allen erforderlichen Komponenten für den sicheren und bestimmungsgemäßen Betrieb ausgerüstet. Neben dem Vorschaltgerät sind ein digitales Timerzündgerät mit IPP++-Technologie (Intelligent Pulse Pause Mode), ein Kompensationskondensator und ein Temperaturschalter mit automatischer Rückstellung integriert. Alle Komponenten sind als System aufeinander abgestimmt. Dadurch werden optimale Betriebsbedingungen für die Lampen und kleine Bauformen erreicht. Die kompakten Versorgungseinheiten ersparen den separaten Einbau und die Verdrahtung von Einzelkomponenten, was zu einer erheblichen Reduzierung von Montagezeiten führt.

Zu beachtende Vorschriften

DIN VDE 0100	Errichten von Niederspannungsanlagen
EN 60598-1	Leuchten - Teil 1: Allgemeine Anforderungen und Prüfungen
EN 61347-1	Geräte für Lampen – Teil 1: Allgemeine und Sicherheitsanforderungen
EN 61347-2-1	Geräte für Lampen – Teil 2-1: Besondere Anforderungen an Startgeräte (andere als Glimmstarter)
EN 61347-2-9	Geräte für Lampen – Teil 2-9: Besondere Anforderungen an Vorschaltgeräte für Entladungs lampen (ausgenommen Leuchtstofflampen)
EN 60923	Vorschaltgeräte für Entladungslampen – Anforderungen an die Arbeitsweise
EN 60927	Geräte für Lampen; Startgeräte (andere als Glimmstarter); Anforderungen an die Arbeitsweise
EN 61048	Geräte für Lampen – Kondensatoren für Leuchtstofflampen- und andere Entladungslampen kreise; Allgemeine und Sicherheitsanforderungen
EN 61049	Geräte für Lampen – Kondensatoren für Leuchtstofflampen- und andere Entladungslampen kreise; Leistungsanforderungen
EN 55015	Grenzwerte und Messverfahren für Funkentstörungen von elektrischen Beleuchtungseinrichtungen und ähnlichen Elektrogeräten
EN 61000-3-2	Elektromagnetische Verträglichkeit (EMV) – Teil 3: Grenzwerte – Hauptabschnitt Teil 2: Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom bis einschließlich 16 A je Leiter)
EN 61547	Einrichtungen für allgemeine Beleuchtungszwecke – EMV-Störfestigkeitsanforderungen

Technische Daten

Betriebsspannungsbereich

Die Versorgungseinheiten können bei der angegebenen Netzspannung im Toleranzbereich

von \pm 10 % für HS- /HI-Lampen und \pm 3 % für C-HI-Lampen betrieben werden.

Ableitstrom ≤ 0,1 mA

Kompensation/Leistungsfaktor

Parallelkompensierte Versorgungseinheiten mit einem Leistungsfaktor $\lambda < 0.9$

 $(\lambda < 0.85 \text{ bei } 100 \text{ W})$

Schutzart IP40, IP65

IP54 bei Aluminium-Gehäuse

Schutzklasse Unabhängige Schutzklasse-II-Versorgungseinheiten (Kunststoff-Gehäuse)

Unabhängige Schutzklasse-I-Versorgungseinheiten (Aluminium-Gehäuse)

Max. Umgebungstemperatur

Siehe ta-Wert auf dem Typenschild der Versorgungseinheit

Leitungslänge zur Lampe

Max. 10 m

F-Kennzeichnung Zur Montage auf normal entflammbaren Oberflächen geeignet

Mechanische Montage

Einbaulage Beliebig auf den Befestigungsfüßen

Abstände Min. 0,20 m zu Wänden, Decken, Isolierungen

Min. 0,20 m zu weiteren Versorgungseinheiten Min. 0,25 m zu Wärmequellen (Lampe)

Auflage Fest, kein Einsinken in Isolierstoff

Elektromagnetische Verträglichkeit (EMV)

Störaussendung Bei Leuchten mit elektromagnetischen Versorgungseinheiten muss nur die Störspannung an

den Anschlussklemmen gemessen werden, da es sich um Systeme mit Lampenspannungen unter 100 Hz handelt. Diese niederfrequenten Störspannungen sind in der Regel bei Hoch-

 $druckent ladungs lampen\ mit\ elektromagnet is chen\ Versorgungse inheiten\ unkritisch.$

Störfestigkeit Aufgrund der robusten Bauweise und Materialauswahl haben elektromagnetische

Versorgungseinheiten eine hohe Störfestigkeit und werden durch die üblicherweise im

Versorgungsnetz auftretenden Störungen nicht beeinträchtigt.

Netzstromoberschwingungen

Entladungslampen haben nach jedem Nulldurchgang des Lampenstroms eine Wiederzündspitze, da die Lampen für einen kurzen Zeitraum (optisch nicht wahrnehmbar) ausgehen. Durch diese Wiederzündspitzen der Entladungslampen werden Netzstromoberschwingungen erzeugt, die durch die Impedanz der Versorgungseinheiten geglättet werden.

VS-Versorgungseinheiten halten diese Grenzwerte sicher ein.

Auswahl von Sicherungsautomaten für VS-Versorgungseinheiten

Dimensionierung von Sicherungsautomaten

Beim Einschalten der Versorgungseinheiten entstehen durch das Aufladen von Glättungskondensatoren hohe kurzzeitige Stromimpulse. Die Zündung der Lampen erfolgt fast gleichzeitig. Hier wird ebenfalls ein hoher Energiebedarf gefordert. Diese hohen Anlageneinschaltströme belasten die Leitungsschutzautomaten, die entsprechend ausgewählt und dimensioniert sein müssen.

Auslöseverhalten Das Automatenauslöseverhalten der Leitungsschutzautomaten wird nach VDE 0641 Teil 11 für B- und C-Charakteristik beschrieben.

Anzahl der Versorgungseinheiten

Nachfolgende Angaben geben Richtwerte an, die anlagenabhängig beeinflusst werden können. Die max. Anzahl gilt für gleichzeitiges Einschalten. Angaben sind für einpolige Sicherungen, bei mehrpoligen reduziert sich die Anzahl um 20 %. Berücksichtigte Stromkreisimpedanz beträgt 400 m Ω (ca. 20 m Zuleitung [2,5 mm²] von der Netzeinspeisung bis zum Verteiler und weitere 15 m bis zur Leuchte). Verdopplung der Stromkreisimpedanz auf 800 m Ω erhöht die mögliche Anzahl der Vorschaltgeräte um 10 %.

Versorgungseinheit-Typ	Automatentyp	Automatentyp								
	B (10 A)	B (16 A)	C (10 A)	C (16 A)						
VNaHJ 35PZT	7	12	12	20						
VNaHJ 70PZT	7	12	12	20						
VNaHJ 100PZT	6	10	10	16						
VNaHJ 150PZT	5	8	8	14						
VNaHJ 250PZT	3	5	5	7						
VNaHJ 400PZT	2	4	3	5						

Schutzfunktionen

Abschalten defekter Lampen

Bei nicht zündender Lampe schaltet die Versorgungseinheit automatisch nach einer vorgegebenen Sicherheitszeit ab. Am Lebensdauerende der Lampe wird durch die programmierte Abschaltzeit das Flackern der Lampe verhindert.

Rücksetzen der Abschaltung und Reset nach Lampenwechel erfolgt durch Aus- und Wiedereinschalten der Netzspannung.

Temperaturschutz Zum Schutz vor unzulässiger Übertemperatur sind die Geräte mit einer Temperaturabschaltung ausgerüstet.

Schutz gegenüber Installations- und Verdrahtungsfehlern

Beim Vorliegen eines Installations- oder Verdrahtungsfehlers, aber auch bei Nullleiterverschiebung im vorhandenen Einspeisungsnetz (Drehstromnetz) wird die Versorgungseinheit Dank der integrierten IPP++-Funktion keinen Startversuch des Leuchtmittels vornehmen.

Für den Fall, dass die Nenn-Versorgungsspannung anliegt, beginnt die Versorgungseinheit sofort das Leuchtmittel zu starten.

Zuverlässigkeit und Lebensdauer

Beim Einhalten der Montagehinweise und des Temperaturgrenzwerts tw für die Wicklungstemperatur des Vorschaltgeräts kann mit einer Lebensdauer der Versorgungseinheiten von 50.000 Stunden gerechnet werden. Ausfallrate: < 0,1 % pro 1000 Std.

2

3

4

5

6

7

8

9

Elektrische Installation

Anschlussklemmen

Die Klemmen können mit starren oder flexiblen Leitern kontaktiert werden.

- starre Leitung: max. 2,5 mm²
- flexible Leitung: max. 2,5 mm²
- Abisolierlänge: 10-11 mm
- Verzinnen von Leitern ist nicht zulässig

Anschlussleitungen

zulässiger Durchmesser 7-9 mm

Die Verwendbarkeit von Leuchtenleitungen und Kabeln in Leuchten mit Zündvorrichtungen ist nach der Leuchtennorm EN 60598-1 10.2.2 zu überprüfen. In der Regel erfüllen alle Silikonund Standard-PVC-Kabel diese Forderungen.

Verdrahtung

Verdrahtung zwischen Versorgungsnetz, Versorgungseinheit und Lampe muss gemäß

Anschlussbild auf dem Typenschild erfolgen.

Hinweis: Leuchtengehäuse (Metall) ist mit dem Schutzleiter zu verbinden.

Montageanleitung für elektromagnetische Vorschaltgeräte

Für den Einbau und die Installation von elektromagnetischen Vorschaltgeräten für Hochdruckentladungslampen

Zu beachtende Vorschriften

DIN VDE 0100	Errichten von Niederspannungsanlagen
EN 60598-1	Leuchten - Teil 1: Allgemeine Anforderungen und Prüfungen
EN 61347-1	Geräte für Lampen – Teil 1: Allgemeine und Sicherheitsanforderungen
EN 61347-2-9	Geräte für Lampen – Teil 2-9: Besondere Anforderungen an Vorschaltgeräte für Entladungslampen (ausgenommen Leuchtstofflampen)
EN 60923	Vorschaltgeräte für Entladungslampen – Anforderung an die Arbeitsweise
EN 55015	Grenzwerte und Messverfahren für Funkentstörungen von elektrischen Beleuchtungseinrichtungen und ähnlichen Elektrogeräten
EN 61000-3-2	Elektromagnetische Verträglichkeit (EMV) – Teil 3: Grenzwerte – Hauptabschnitt Teil 2: Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom bis einschließlich 16 A je Leiter)
EN 61547	Einrichtungen für allgemeine Beleuchtungszwecke – EMV-Störfestigkeitsanforderungen

Technische Daten

Betriebsspannungsbereich

Die Vorschaltgeräte können bei der angegebenen Netzspannung im Toleranzbereich von ± 10 % für HS- /HI- und HM-Lampen und ± 3 % für C-HI-Lampen betrieben werden.

Ableitstrom $\leq 0,1 \text{ mA}$

Kompensation/Leistungsfaktor

Induktive Vorschaltgeräte: $\lambda \le 0.5$

Parallelkompensierte Vorschaltgeräte: $\lambda \ge 0.85$

Mechanische Montage

Einbaulage Beliebig

Einbauort Vorschaltgeräte sind zum Einbau in Leuchten oder vergleichbaren Konstruktionen bestimmt.

Bei unabhängigen Vorschaltgeräten ist der Einbau in ein Gehäuse nicht erforderlich.

Befestigung Vorzugweise mit M4- bis M6-Schrauben je nach Vorschaltgerät-Baumaß.

Bei umgossenen Vorschaltgeräten nur Schrauben mit Flachkopf (M5), unterlegt mit einer

Scheibe (DIN 9021), verwenden (Anzugsdrehmoment ≈ 2 Nm).

Temperaturen In der Applikation muss die Wicklungstemperatur tw überprüft werden und der angegebene

Grenzwert eingehalten werden. Dabei erfolgt die Überprüfung der Wicklungstemperatur mit

Hilfe der genormten Widerstandsmessung.

Ein Maß für die Eigenerwärmung des Vorschaltgeräts und für die Verlustleistung ist die Angabe des Δt-Werts. Je niedriger dieser Wert, desto niedriger ist die Verlustleistung des Vorschaltgeräts. Dieser Wert wird nach genormten Messvorschriften ermittelt und stellt einen

Vergleichsmaßstab von Vorschaltgeräten gleicher Bauform für die Auswahl dar.

Elektromagnetische Verträglichkeit (EMV)

Störaussendung Bei Leuchten mit elektromagnetischen Vorschaltgeräten muss nur die Störspannung an den

Anschlussklemmen gemessen werden, da es sich um Systeme mit Lampenspannungen unter 100 Hz handelt. Diese niederfrequenten Störspannungen sind in der Regel bei Hoch-

druckentladungslampen mit elektromagnetischen Vorschaltgeräten unkritisch.

Störfestigkeit Aufgrund der robusten Bauweise und Materialauswahl haben elektromagnetische Vorschalt-

geräte eine hohe Störfestigkeit und werden durch die üblicherweise im Versorgungsnetz

auftretenden Störungen nicht beeinträchtigt.

Netzstromoberschwingungen

Entladungslampen haben nach jedem Nulldurchgang des Lampenstroms eine Wiederzündspitze, da die Lampen für einen kurzen Zeitraum (optisch nicht wahrnehmbar) ausgehen. Durch diese Wiederzündspitzen der Entladungslampen werden Netzstromoberschwingungen erzeugt, die durch die Impedanz der Vorschaltgeräte geglättet werden. VS-Vorschaltge-

räte halten diese Grenzwerte sicher ein.

Auswahl von Sicherungsautomaten für elektromagnetische Vorschaltgeräte von VS

Dimensionierung von Sicherungsautomaten

Beim Einschalten von Vorschaltgeräten entstehen durch parasitäre Kapazitäten hohe kurzzeitige Stromimpulse, die sich in Beleuchtungsanlagen mit der Anzahl der Leuchten addieren können. Diese hohen Anlageneinschaltströme belasten die Leitungsschutzautomaten. Deshalb bei Beleuchtungsanlagen nur stoßstromfeste Sicherungsautomaten verwenden.

٦

2

3

4

5

6

7

3

9

Auslöseverhalten Das Automatenauslöseverhalten der Leitungsschutzautomaten wird nach VDE 0641 Teil 11 für B- und C-Charakteristik beschrieben.

Anzahl der Vorschaltgeräte

Nachfolgende Angaben geben Richtwerte an, die anlagenabhängig beeinflusst werden können. Die max. Anzahl gilt für gleichzeitiges Einschalten. Angaben sind für einpolige Sicherungen, bei mehrpoligen reduziert sich die Anzahl um 20 %. Berücksichtigte Stromkreisimpedanz beträgt 400 m Ω (ca. 20 m Zuleitung [2,5 mm²] von der Netzeinspeisung bis zum Verteiler und weitere 15 m bis zur Leuchte).

Verdopplung der Stromkreisimpedanz auf $800~\text{m}\Omega$ erhöht die mögliche Anzahl der Vorschaltgeräte um 10~%. Die in den nachfolgenden Tabellen angegebenen Werte sind Richtwerte und können durch anlagenspezifische Faktoren beeinflusst werden.

Mögliche Anzahl von Vorschaltgeräten an Sicherungsautomaten mit und ohne Kompensation

Lampe	·n-	СР	Maxim	ale An	zahl von	Vorsch	altaerät	en nro	Sicherur	nasauto	maten =	ohne k	Compens	ation /	mit Kom	nensat	ion					
daten	**			10	1	13	1	16	1	20	1	25	100	10	1	13	1	316	l F	320	F	325
W	lv	υF	ohne	lmit	ohne	lmit	ohne	Imit	ohne	mit	ohne	mit	ohne	Imit	ohne	lmit	ohne	I _{mit}	ohne	Imit	ohne	mit
Quec	ksilbe	rdamp												1								
50	230	7	10	19	13	25	15	31	18	39	23	49	8	10	11	12	13	15	16	18	20	23
80	230	8	6	12	7	15	9	19	11	24	14	30	6	6	8	7	10	9	12	11	15	14
125	230	10	4	7	5	9	7	12	7	15	9	19	4	4	5	5	7	6	9	7	10	9
250	230	18	2	4	3	5	3	6	3	7	4	9	2	2	3	2	3	3	4	3	5	4
400	230	25	1	2	1	3	2	4	2	5	2	6	1	1	1	1	2	22	3	2	3	2
700	230	40	-	1	-	1	1	2	1	2	1	3	1	-	1	-	1	1	1	1	2	1
1000	230	60	-	1	_	1	_	1	1	2	1	2	-	-	_	_	1	_	1	1	1	1
Halo	Halogen-Metalldampflampen (HI)																					
35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	9	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	6	12
250	230	32	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	35	2	3	2	4	3	5	4	7	5	8	1	2	1	3	2	4	2	5	3	6
1000	230	85	-	1	-	1	1	1	1	3	1	3	_	-	_	-	_	1	1	1	1	2
2000	380	60	-	1	-	1	-	2	-	2	-	3	_	-	-	-	_	1	_	1	-	2
2000	380	37	-	_	-	_	-	1	_	1	_	2	_	-	_	_	_	_	_	1	_	1
3500	380	100	-	_	-	_	_	_	-	-	_	_	_	-	-	_	_	_	_	_	-	_
Natri	umdaı	mpf-H	chdru	cklam	pen (ŀ	IS)																
35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
50	230	10	9	16	11	20	14	24	18	31	22	38	6	11	8	14	10	17	13	22	16	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	10	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	7	12
250	230	36	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	45	1	3	1	3	2	4	3	5	4	7	1	2	1	2	1	3	2	4	2	5
600	230	60	1	2	1	2	1	2	2	3	2	4	<u> </u>	1	_	1	1	2	2	2	2	3
1000	230	100	1	1	1	1	1	1	1	2	2	3	-	-	_	-	_	1	1	1	1	2

Schutzfunktionen

Zum VS-Programm gehören Vorschaltgeräte mit integriertem Temperaturschalter. Für den Fall, dass eine Lampe am Lebensdauerende einen Gleichrichtereffekt aufweist, wird so eine sichere Trennung vom Netz durchgeführt Das Abschaltverhalten des Temperaturschalters wird von der Leuchtenkonstruktion beeinflusst. Für die Überprüfun des werksseitig dimensionierten Temperaturschalters ist der Leuchtenhersteller zuständig. Zu beachten ist hierzu die Norm EN 60598-1 Abschnitt 12.5. VS kann entsprechend den Anforderungen eine Anpassung der Temperaturschalter mit der geeigneten Abschalttemperatur vornehmen.

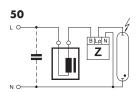
Zuverlässigkeit und Lebensdauer

Beim Einhalten der Grenzwerte für die Wicklungstemperatur, kann mit einer Lebensdauer der Vorschaltgeräte von 100.000 Stunden gerechnet werden. Ausfallrate < 0,025 % pro 1000 Std.

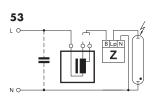
Elektrische Installation

Steckklemmen Klemmen können mit starren Leitern bis max. 1,5 mm² kontaktiert werden.

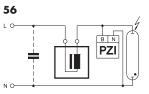
- Schraubklemmen Klemmen können mit starren oder flexiblen Leitern mit Aderendhülsen kontaktiert werden.
 - Die Leitungsquerschnitte werden durch die Klemmen vorgegeben und können je nach Typ $0.5-1.5 \text{ mm}^2 / 0.75-2.5 \text{ mm}^2 / 1.5-2.5 \text{ mm}^2$ betragen.
 - Abisolierlänge: 8-9 mm
 - Verzinnen von Leitern ist nicht zulässig
 - Max. Anzugsdrehmoment 0,5 Nm


Verdrahtung

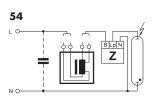
Verdrahtung zwischen Versorgungsnetz, Vorschaltgerät und Lampe muss nach dem zugehörigen Schaltbild erfolgen (s. S. 98-100).

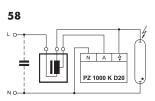

Komponenten

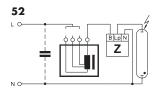
Bei Hochdruckentladungslampen dürfen nur Komponenten eingesetzt werden, die für die entsprechende Zündspannung ausgelegt sind.

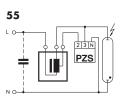

Schaltungen für Natriumdampf-Hochdrucklampen (HS) und Halogen-Metalldampflampen (HI)

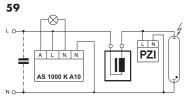

 $\label{thm:condition} \ddot{\text{U}} \text{berlagerungsz\"{u}} \text{ndung von HS- und HI-Lampen}$

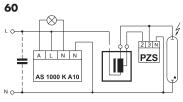

Überlagerungszündung von HS- und HI-Lampen (VG mit zwei alternativen Leistungsanzapfungen)

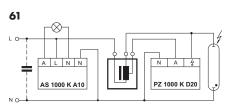

Pulserzündung von HI-Lampen, Zündspannung $0.9~\mathrm{kV}$

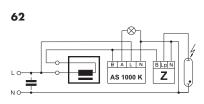

Überlagerungszündung von HS- und HI-Lampen (VG mit zwei alternativen Spannungsanzapfungen)


Überlagerungszündung von HS- und HI-Lampen (VG mit je zwei alternativen Spannungs- und Leistungsanzapfungen)

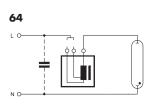

Pulserzündung für HS- und HI-Lampen

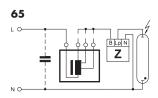

Überlagerungszündung von HS- und HI-Lampen (VG mit drei alternativen Spannungsanzapfungen)

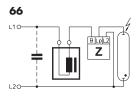

Pulserzündung von Standard-HS-Lampen


Anlaufschalter für HI-Lampen, Zündspannung 0,9 kV $\,$

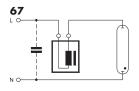
Anlaufschalter für Standard-HS-Lampen


Anlaufschalter für HS- und HI-Lampen

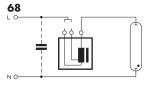

Anlaufschalter für HS- und HI-Lampen


SDW-T-Lampen

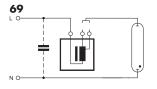
HS-Lampen mit Innenzünder (Vorschaltgerät mit zwei alternativen Spannungsanzapfungen)

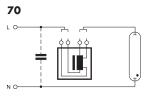


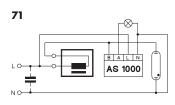
Überlagerungszündung von HS- und HI-Lampen mit drei alternativen Leistungsanzapfungen



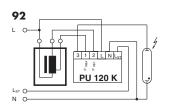
Überlagerungszündung von HS- und HI-Lampen bei Mehrphasennetz

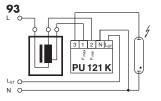

Schaltungen für Quecksilberdampf-Hochdrucklampen (HM)

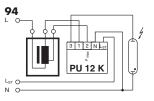

HM-Lampen

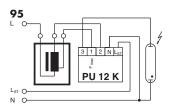

HM-Lampen (VG mit zwei alternativen Spannungsanzapfungen)

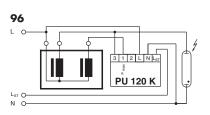
HM-Lampen (VG mit zwei alternativen Leistungsanzapfungen)

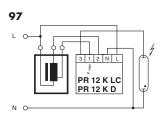

HM-Lampen (VG mit je zwei alternativen Spannungs- und Leistungsanzapfungen)

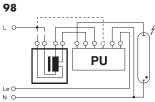

Anlaufschalter für HM-Lampen mit Hilfslampe


LST an beliebige Phase L1, L2 oder L3 schaltbar


Bei abgeschalteter Steuerphase (LST = 0 V) mit Vorschaltgeräten in zwei Leistungsstufen


Bei zugeschalteter Steuerphase (LST = 230 V) mit Vorschaltgeräten in zwei Leistungsstufen

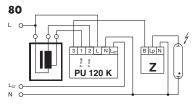

Bei abgeschalteter Steuerphase (LST = OV) mit Vorschaltgeräten in zwei Leistungsstufen

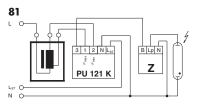

Bei zugeschalteter Steuerphase (LST = 230 V) mit Vorschaltgeräten in zwei Leistungsstufen

Bei abgeschalteter Steuerphase (LST = 0 V) mit 2 Vorschaltgeräten in Parallelschaltung

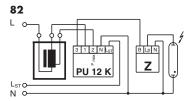
Elektronische Leistungsumschaltung ohne Steuerphase

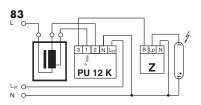
Vorschaltgeräte mit zwei Leistungsstufen und zwei

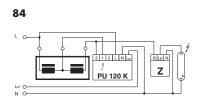




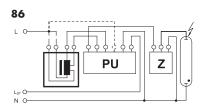
Leistungsreduzierung von Natriumdampf-Hochdrucklampen (HS-Lampen) – Überlagerungszündsystem

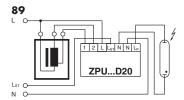

LST an beliebige Phase L1, L2 oder L3 schaltbar


Bei abgeschalteter Steuerphase (LST = 0 V) mit Vorschaltgeräten in zwei Leistungsstufen

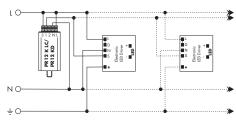

Bei zugeschalteter Steuerphase (LST = 230 V) mit Vorschaltgeräten in zwei Leistungsstufen

Bei abgeschalteter Steuerphase (LST = 0 V) mit Vorschaltgeräten in zwei Leistungsstufen


Bei zugeschalteter Steuerphase (LST = 230 V) mit Vorschaltgeräten in zwei Leistungsstufen


Bei abgeschalteter Steuerphase (LST = 0 V) mit Hauptvorschaltgerät und Zusatzinduktivität

Elektronische Leistungsumschaltung ohne Steuerphase



Vorschaltgerät mit zwei Leistungsstufen und zwei Spannungsanzapfungen (LST = 0 V oder LST > 0 V)

Bei abgeschalteter Steuerphase (LST = 0 V) mit Vorschaltgeräten in zwei Leistungsstufen

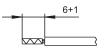
Leistungsumschaltung von LED-Treibern und elektronischen Vorschaltgeräten

Fassungen für Hochdruckentladungslampen

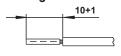
Halogen-Metalldampf- und Natriumdampf-Hochdrucklampen haben sehr unterschiedliche Sockel. Hier sind RX7s, Fc2, G8.5, GX8.5, GU8.5, GX10, G12, GX12, PG12, PGJ5, GU6.5, E27 und E40 zu nennen, entsprechend ein- oder zweiseitiger Sockelung der Lampen. Für alle Fassungen gelten die typischen Bedingungen für Entladungslampen: hohe Zündspannung und Temperaturen. Bei der Fassungskonzeption verdienen die hohen Anlaufströme besondere Beachtung. Dies spiegelt sich bei den Isolierstoffen wider, die üblicherweise aus solider Keramik oder wärmebständigem Kunststoff (etwa PPS – Polyphenylsulfid) bestehen. Für die Kontakte werden, je nach Lampenanforderung (Spannung, Strom, Temperatur usw.), Silber, Nickel oder Kupferlegierungen mit dicken Nickelschichten verwendet. Die Leuchtenvorschrift EN 60598-1 (VDE 0711 Teil 1) definiert die Sicherheitsanforderungen bezüglich Zündspannungen in Verbindung mit Kriech- und Luftstrecken. Besonders beim Einsatz von Hochdrucklampen mit den Edison-Sockeln E27 und E40 muss darauf geachtet werden, dass die Fassungen für Entladungslampen zugelassen sind. Diesbezüglich geeignete Fassungen sind mit dem Wert bis max. "5 kV" gekennzeichnet und berücksichtigen die von den Fassungsvorschriften EN 60238 (VDE 0616 Teil 1) geforderten erhöhten Kriech- und Luftstrecken. Entsprechend gelten für die anderen Sockelsysteme die Fassungsvorschriften für Sonderfassungen EN 60838-1 (VDE 0616 Teil 5). Die hohen Zündspannungsimpulse stellen auch besondere Ansprüche an die Leitungen. In der Praxis haben sich für Entladungslampen silikonisolierte Leitungen mit 3,6 mm Außendurchmesser bewährt. Bei Lampen für sofortige Heißwiederzündung (20 kV) sollten 7 mm dicke Silikonisolierungen mit Glasseideeinlage zum Einsatz kommen.

Beim Anschluss von Fassungen mit freien Leitungsenden an Vorschaltgerätesteckklemmen muss der Durchmesser des Leiters und die Länge der Abisolierung der eingesetzten Leitungen berücksichtigt werden, um einen fehlerfreien Betrieb der verbauten Komponenten zu gewährleisten. Hierzu bietet Vossloh-Schwabe auf Anfrage zusätzliche Versionen mit kompaktierten Leitungsenden als weitere Option an.

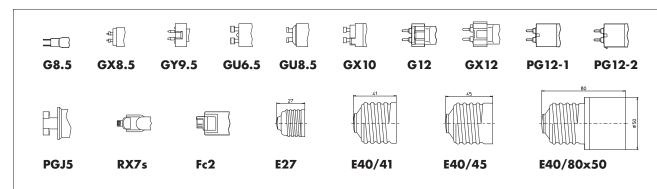
Bei kompaktierten Leitungsenden muss eine Verringerung des Leitungsdurchmessers am Leitungsende berücksichtigt werden, was dazu führt, dass die jeweils eingesetzte Vorschaltgerätesteckklemme in der Lage sein muss, den nächstkleineren Leitungsquerschnitt zu verarbeiten (siehe Beispieltabelle).


In Verbindung mit Vorschaltgeräteschraubklemmen wird der Einsatz von Aderendhülsen empfohlen.

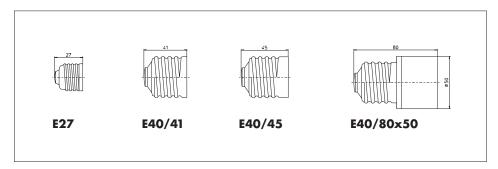
Leitungsquerschnitt	Vorschaltgeräte-Steckklemmenbereich beim Einsatz kompaktierter Leitungsenden
mm ²	mm ²
0,75	≥ 0,5
1	≥ 0,75


VS-Fassungen für den UL-Markt sowie UL-approbierte Leitungen sind für alle gängigen Lampentypen auf Anfrage erhältlich.

Weitere Informationen stehen Ihnen unter www.unvlt.com zur Verfügung.


Kabel mit Aderendhülse

Kabel mit kompaktierter Leitung



Die Lampensockel der gebräuchlichsten HI- und HS-Lampen

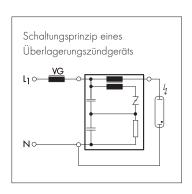
Die Lampensockel der gebräuchlichsten HM-Lampen

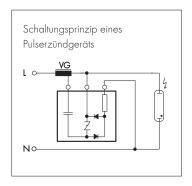
Für Quecksilberdampf-Hochdrucklampen (HM) werden in erster Linie Sockelungen des Edison-Systems verwendet.

Zündgeräte

Zündspannungen von Natriumdampf-Hochdrucklampen (HS) und Halogen-Metalldampflampen (HI)

Die Zündspannung der HS- und HI-Lampen wird durch die verwendete Lampentechnologie und die Kriech- und Luftstrecken vom Sockel-Fassungssystem bestimmt. Bei den Natriumdampf-Hochdrucklampen 35, 50 und 70 W mit dem E27-Sockel beträgt die Zündspannung 1,8–2,3 kV, alle anderen Hochdrucklampen der Natriumdampf- und Halogen-Metalldampflampen-Familien werden mit Zündspannungen zwischen 4 und 5 kV gezündet (Ausnahme Sonderlampen und Lampen mit Sockel PGJ5).


Überlagerungszündgeräte


Überlagerungszündgeräte arbeiten unabhängig von Vorschaltgeräten und erzeugen definierte Zündimpulse in den Spannungsbereichen von 220-240 V ±10 % bzw. 380-415 V ±10 %. Weil die Netzfrequenz nur eine untergeordnete Rolle spielt, können diese Systeme problemlos bei 50 wie auch bei 60 Hz eingesetzt werden. In jeder Halbwelle werden je nach Forderung der Lampenhersteller Impulse bzw. Impulspakete erzeugt, die in ihrer Breite und Höhe definiert sind. Obwohl Überlagerungszündgeräte vom Lampenstrom durchflossen werden, erzeugen sie im Verhältnis zur Systemleistung nur geringe Verluste. Subtrahiert man die Eigenerwärmung, hervorgerufen durch die Eigenverluste, von der angegebenen maximalen Gehäusetemperatur (tc), erhält man die maximal zulässige Umgebungstemperatur.

Überlagerungszündgeräte sollten in der Nähe der Lampenfassung angeordnet werden. Die Distanz zwischen Zündgerät und Lampe ist von der jeweils zulässigen maximalen Belastungskapazität abhängig, die für jedes Zündgerät in den technischen Daten angegeben ist. Dabei ist die kapazitive Belastung des Kabels, von dessen Beschaffenheit und Anordnung abhängig. Sie liegt gewöhnlich bei 70 bis 100 pF je Meter. Die Gehäusetemperatur soll –30 °C nicht unterschreiten bzw. den auf dem Gerät angegebenen Maximalwert nicht übersteigen.

Pulserzündgeräte

Pulserzündgeräte nutzen die Wicklung eines induktiven Vorschaltgeräts zur Erzeugung der Impulsspannung, die zum Starten von Hochdruckentladungslampen erforderlich ist. Deshalb müssen die Vorschaltgeräte für die Belastung mit den entsprechend hohen Zündspannungen ausgelegt sein. Der erhöhte Aufwand gilt besonders der Isolation sowie der Dimensionierung der Kriech- und Luftstrecken. Durch die Erzeugung energiereicher Impulse ist das Pulsersystem auch für große Leitungslängen zwischen Zündgerät und Lampe geeignet. Dem heutigen Stand der Technik entsprechend basieren gute Geräte auf elektronischen Schaltungen. Abhängig von der Konstruktion und den technischen Forderungen werden Pulserzündgeräte im einfachsten Fall parallel zur Lampe geschaltet. Weitere Ausführungsformen nutzen Teilwicklungen eines Vorschaltgeräts, das entweder Anzapfungen zur Spannungswahl oder spezielle Anzapfungen zum Pulserbetrieb aufweist.

VS-Zündgeräte bieten folgende Vorteile

- vollelektronischer Aufbau
- kompakte Bauweise
- großer Nennspannungsbereich
- großes Leistungsspektrum
- geringe Eigenerwärmung
- minimale Verlustleistung
- geringe Geräuschentwicklung
- · hohe Lebensdauer
- hohe elektrische Sicherheit durch den Einsatz hochwertiger Bauelemente (z. B. approbierte Kondensatoren)
- hohe Wärmebeständigkeit (max. zulässige Gehäusetemperatur t_c: 105 °C bei Überlagerungszündgeräten und 95 °C bei Pulserzündgeräten)
- hohe Brandsicherheit der Vergussmasse (zertifiziert nach EN 60926 und UL 94-V0)
- umweltverträgliche Vergussmasse (Abfallschlüssel-Nr. 57110)

Produktprogramm

Das VS-Produktprogramm umfasst Überlagerungs- und Pulserzündgeräte in Standardausführung und mit Abschaltautomatik. Überlagerungszündgeräte mit Abschaltautomatik sind mit verschiedenen Abschaltzeiten und Zündspannungsimpulsmechanismen (A und D) verfügbar. Dabei stellen Zündgeräte der Serie D mit dem Intelligent-Pulse-Pause-Mode (IPP) ein Optimum für die sichere Zündung und das Abschalten von defekten Lampen dar

Elektronische Zündgeräte mit integrierter Abschaltfunktion ermitteln während des Zündvorgangs Daten zum Zündverhalten. Anhand dieser Informationen, wie Häufigkeit oder Ausbleiben der Zündung, erkennen sie gealterte Lampen und schalten den Zündvorgang am Lebensdauerende oder bei Defekt zuverlässig nach definierter Zeit ab. Dadurch werden negative Folgen, die schadhafte Lampen hervorrufen, vermindert.

Überlagerungs- und Pulserzündgeräte mit Abschaltautomatik

Zündgeräte mit IPP-Technologie und erweiterter Abschaltfunktion – Serie D

Zündgeräte der D-Serie erzeugen nach dem Anlegen der Netzspannung Zündspannungsimpulspakete, die abhängig von dem Lampenbetriebszustand, der Lampenerkennung und der sicheren Brennzeit vom Zündgerät gesteuert und ggf. abgeschaltet werden. Wird zum Beispiel bei drei aufeinander folgenden Zündvorgängen die sichere Brennzeit nicht erreicht, so erfolgt eine Abschaltung der Impulserzeugung.

Diese Leistungsmerkmale der Zündgeräte mit IPP-Technologie (Intelligent-Pulse-Pause-Mode) und erweiterter Abschaltfunktion werden durch den Einsatz von Mikroprozessoren mit entsprechender Programmierung erreicht.

Z ... D20/

PZ ... D20

für HS-, HI- und C-HI-Lampen programmierte Abschaltzeit 1216 Sek.

Zündgeräte mit IPP-Technologie und erweiterter Abschaltfunktion sind bis zur Leistungsklasse von 1000 W verfügbar.

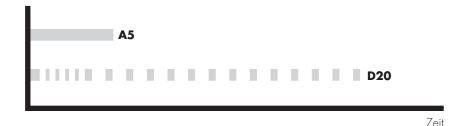
1

2

3

4

5


5

7

8

9

Programmierte Abschaltfunktionen von VS-Zündgeräten

Zündgeräte mit Abschaltautomatik – Serie A

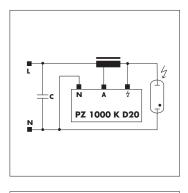
Zündgeräte der A-Serie liefern nach dem Anlegen der Netzspannung laufend Zündspannungsimpulse bis die Lampe gezündet hat oder die vorgegebene Abschaltzeit (Summe aller Zündzeiten) bei nicht zündender Lampe erreicht ist.

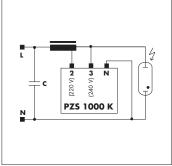
PZ ... A5 für HS-Lampen programmierte Abschaltzeit ca. 300 Sek.

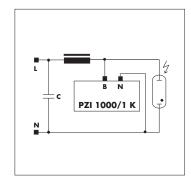
Technische Daten der Pulserzündsysteme im Überblick

Für HS-, HI- und C-HI-Lampen - PZ 1000 K D20

für Natriumdampf-Hochdrucklampen (HS) 50 bis 1000 W, Halogen-Metalldampflampen (HI) 35 bis 1000 W und für Keramikbrennerlampen (C-HI) 35 bis 400 W Zündspannung: 1,8 - 2,3 kV bzw. 4 - 5 kV Impulsanzahl: 2 pro Netzperiode Belastungskapazität: 20 - 1000 pF Zündgerät mit Abschaltautomatik und IPP-Technologie Geeignete Vorschaltgeräte-Typen:


NaHJ...PZT mit spezieller Anzapfung der Wicklung, deren Lage die Höhe der Zündspannung bestimmt


Für HS-Lampen – PZS 1000 K


für Standard-Natriumdampf-Hochdrucklampen (HS) 50 bis 1000 W Nicht geeignet für Entladungslampen der Typen: SUPER, PLUS, XL usw. Zündspannung: ca. 4 kV Impulsanzahl: 1 pro Sekunde Belastungskapazität: 20-4000 pF Geeignete Vorschaltgeräte-Typen: NaH...P mit Anzapfung der Wicklung (20 V Spannungsdifferenz)

Für HI-Lampen - PZI 1000/1 K

für Halogen-Metalldampflampen (HI) mit einer Zündspannung bis 0,9 kV Impulsanzahl: 1 pro Netzperiode Belastungskapazität: max. 10000 pF Geeignete Vorschaltgeräte-Typen: Q...

Montageanleitung für Zündgeräte

Für den Einbau und die Installation von Zündgeräten

Zu beachtende Vorschriften

DIN VDE 0100	Errichten von Niederspannungsanlagen
EN 60598-1	Leuchten - Teil 1: Allgemeine Anforderungen und Prüfungen
EN 61347-1	Geräte für Lampen – Teil 1: Allgemeine und Sicherheitsanforderungen
EN 61347-2-1	Geräte für Lampen – Teil 2-1: Besondere Anforderungen an Startgeräte (andere als Glimmstarter)
EN 60927	Geräte für Lampen; Startgeräte (andere als Glimmstarter); Anforderungen an die Arbeitsweise
EN 55015	Grenzwerte und Messverfahren für Funkentstörung von elektrischen Beleuchtungsanlagen und ähnlichen Elektrogeräten
EN 61000-3-2	Elektromagnetische Verträglichkeit (EMV) – Teil 3: Grenzwerte – Hauptabschnitt Teil 2: Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom bis einschließlich 16 A je Leiter)
EN 61547	$Einrichtungen \ für \ allgemeine \ Beleuchtungszwecke \ - \ EMV-St\"{o}rfestigkeitsanforderungen$

Technische Daten

Betriebspannungsbereich

Die Zündgeräte können bei der angegebenen Netzspannung im Toleranzbereich von $\pm 10\,\%$ betrieben werden.

Max. Gehäusetemperatur t_c

Für alle Überlagerungszündgeräte ist eine maximale Gehäusetemperatur t_c von 105 °C und für alle Pulserzündgeräte von t_c = 95 °C angegeben. Bei der Überprüfung in der Anwendung muss sichergestellt werden, dass dieser Grenzwert nicht überschritten wird. Durch die Wahl eines Zündgeräts für höhere Lampenströme kann die Eigenerwärmung reduziert und damit auch die Temperatur am t_c -Messpunkt gesenkt werden. Hinweise zur Eigenerwärmung sind der nachfolgenden Tabelle zu entnehmen. Durch alternde Lampen wird das Temperaturgefüge in den Leuchten negativ beeinflusst.

Minimale Umgebungstemperatur ta

Für alle Überlagerungs- und Pulserzündgeräte beträgt die minimale Umgebungstemperatur ta –30 °C. Zündgeräte für den Einsatz in Anwendungen mit besonderen Anforderungen an die Umgebungstemperatur (z. B. –40 °C) erhalten Sie auf Anfrage.

2

3

4

5

6

7

8

9

Überlagerungszündgeräte – Technische Daten

	Zündgeräte-Typ	Max. Lampen- strom	Verlust- leistung	Eigener- wärmung	Zünd- spannung	Max. Belastungs- kapazität	Max. Leitungslänge zwischen Zündgerät und Lampe*	Anschlusskle (mm²)	emmen	Gehäuse- material	Abmessungen (Ø x L oder L x B x H) Länge ohne Gewinde- ansatz
V/Hz		A	l _w	K		pF	m	Schraub	Steck		mm
220 - 240/	Z 70 S	2	< 0,6	< 5	1,8 - 2,3	200	2	0,75 - 4	-	Al	Ø35 x 76
50 - 60	Z 70 K	2	< 0,6	< 5	1,8 - 2,3	200	2	0,75 - 4	_	PC	78 x 34 x 27
								_	0,5 - 2,5	1	81 x 34 x 27
	Z 70 K D20	2	< 0,6	< 5	1,8 - 2,3	100	2	0,75 - 4	_	PC	80 x 34 x 30
								_	0,5 - 2,5	1	83 x 34 x 30
	Z 250 S	3,5	< 1,8	< 20	4,0 - 5,0	100	1	0,75 - 4	_	Al	Ø35 x 76
	Z 250 K	3,5	< 1,8	< 20	4,0 - 5,0	100	1	0,75 - 4	_	PC	78 x 34 x 27
								_	0,5 - 2,5		81 x 34 x 27
	Z 250 K D20	3,5	< 1,8	< 20	4,0 - 5,0	100	1	0,75 - 4	_	PC	80 x 34 x 30
								_	0,5 - 2,5		83 x 34 x 30
	Z 400 S	5	< 3,0	< 25	4,0 - 5,0	100	1	0,75 - 4	_	Al	Ø45 x 76
	Z 400 M	5	< 3,0	< 35	4,0 - 5,0	50	0,5	0,75 - 4	-	Al	Ø35 x 76
	Z 400 M VS-Power										
	Z 400 M S										
	Z 400 M K	5	< 3,0	< 35	4,0 - 5,0	50	0,5	0,75 - 4	_	PC	78 x 34 x 27
								_	0,5 - 2,5		81 x 34 x 27
	Z 400 M K VS-Power	5	< 3,0	< 35	4,0 - 5,0	50	0,5	0,75 - 4	-	PC	78 x 34 x 27
								_	0,5 - 2,5		81 x 34 x 27
	Z 400 S D20	5	< 3,0	< 25	4,0 - 5,0	100	1	0,75 - 4	-	Al	Ø45 x 90
	Z 400 M K D20	5	< 3,0	< 35	4,0 - 5,0	50	0,5	0,75 - 4	-	PC	80 x 34 x 30
								_	0,5 - 2,5		83 x 34 x 30
	Z 750 S	8	< 3,0	< 20	4,0 - 5,0	100	1	0,75 - 2,5	_	Al	Ø50 x 90
	Z 1000 S	12	< 6,0	< 35	4,0 - 5,0	100		0,75 - 2,5	-	Al	Ø50 x 80
	Z 1000 TOP	10	4.0	0.5	10.50	100	,	0.75 0.5			83 x 83 x 68
	Z 1000 S D20	12	< 6,0	< 35	4,0 - 5,0	100	1	0,75 - 2,5	-	Al	Ø50 x 89
	Z 1000 L	12	< 6,0	< 35	4,0 - 5,0	2000	20	0,75 - 2,5	-	Al	Ø50 x 97
	Z 1200/2,5	15	< 7,5	< 40	2,0 - 2,5	200		0,75 - 2,5	_	Al Al	Ø50 x 80
	Z 1200/9 Z 2000 S	20	< 10,0	< 40	7,0 - 8,0 4,0 - 5,0	100	0,5	0,75 - 2,5 0,75 - 2,5	_	Al	Ø50 x 135 Ø65 x 96
380 - 420/	Z 1000 S/400V	6	< 6,0	< 30	4,0 - 5,0	2000	20	0,75 - 2,5	_	Al	Ø45 x 84
50 - 60	Z 2000 S/400V	12	< 5,0	< 32	4,0 - 5,0	2000	20	0,75 - 2,5		Al	Ø50 x 88
50 - 00	Z 3500 S/400V	20	< 7,0	< 35	4,0 - 5,0	100	1	0,75 - 2,5		Al	Ø65 x 96

^{*} Bei einer Leitung mit z. B. 100 pF pro m $(3 \times 2.5 \text{ mm}^2)$

Pulserzündgeräte – Technische Daten

Nennspannung/	Pulserzündgeräte-Typ	Gehäuse-	Zünd-	Мах.	Max. Leitungslänge	Anschluss-	Gehäuse-	Abmessungen
Frequenz		temperatur	spannung	Belastungs-	zwischen Zünd-	schraub-	material	(Ø x L oder L x B x H)
		t _C		kapazität	gerät und Lampe*	klemmen		Länge ohne
								Gewindeansatz
V/Hz		°C	kV	pF	m	mm ²		mm
220 - 240/50 - 60	PZS 1000 K	95	ca. 4	4000	40	0,5 - 1,5	PC	50 x 28 x 27
220 - 240/50 - 60	PZ 1000 K D20	95	1,8 - 2,3/	1000	10	0,75 - 2,5	PC	74 x 34 x 27
			4,0 - 5,0					
220 - 240/50 - 60	PZI 1000/1 K	95	0,7 - 0,9	10000	100	0,5 - 2,5	PC	57 x 28 x 27
380 - 420/50 - 60	PZ 1000/400 V A5	95	4,0 - 5,0	800	8	0,75 - 2,5	Al	Ø40 x 80

^{*} Bei einer Leitung mit z. B. 100 pF pro m (3 x 2,5 mm²) – Verlegung berücksichtigen

Mechanische Montage

Einbaulage Beliebig

Einbauort Zündgeräte sind zum Einbau in Leuchten oder vergleichbaren Konstruktionen bestimmt. Zündgeräte vor direkter Wärmestrahlung

der Lampen durch geeigneten Einbau schützen.

Abstand zur Lampe

Der Abstand vom Zündgerät zur Lampe wird durch die Belastungskapazität der verwendeten Leitungen und durch die Auslegung

der Zündgeräteimpulse bestimmt. In der Tabelle auf Seite 106 ist der Abstand für eine typische dreiadrige Leitung mit einem

Querschnitt von 2,5 mm² pro Leiter wiedergegeben.

Gehäusematerialien

Ohne Kennzeichnung in der Typenbezeichnung: Aluminium; Kennzeichnung "K": Polycarbonat

Befestigung Über Gewindeansatz M8x10 (Z 2000 S, Z 3500 S/400 V: M12x12)

Abmessungen Die Abmessungen der Zündgeräte sind der Tabelle auf Seite 106 zu entnehmen.

Elektromagnetische Verträglichkeit (EMV)

Störaussendung Zündgeräte erzeugen während der Lampenzündung durch die hohen Zündspannungen Störimpulse, die als Knackstörungen

betrachtet nicht beurteilt werden. Da aber bei alten nicht zündwilligen Lampen diese Störungen dauernd auftreten, ist der

Betreiber der Beleuchtungsanlage gesetzlich verpflichtet, diese Lampen auszuwechseln.

Durch die Verwendung von Zündgeräten mit Abschaltautomatik werden diese Störaussendungen sicher unterbunden.

Störfestigkeit Aufgrund der Bauweise und der Materialauswahl haben die Zündgeräte von VS eine hohe Störfestigkeit und halten die

geforderten Grenzwerte ein.

Netzstromoberschwingungen

Werden während der Zündung von Lampen nicht betrachtet. VS-Zündgeräte erfüllen die Anforderungen.

Zuverlässigkeit und Lebensdauer

Für die Lebensdauer ist das sichere Einhalten der Gehäusetemperatur t_c in der Anwendung erforderlich. Da die Zündgeräte nur während der Zündung der Lampen durch hohe Spannungen belastet werden, kann beim Einhalten der t_c-Werte mit einer Lebensdauer von 10 Jahren gerechnet werden. Ausfallrate < 0,04 % pro 1000 Std.

Elektrische Installation

Anschlussklemmen

Die Anschlussklemmen der VS-Zündgeräte sind als Schraub- bzw. Steckklemmen ausgelegt. Beim Anschluss des Leiters bei Schraubklemmen sollte ein max. Drehmoment von 0,8 Nm nicht überschritten werden. Steckklemmen können mit starren Leitern im Querschnitt von 0,5-2,5 mm² und entsprechenden flexiblen Leitern mit Aderendhülse kontaktiert werden. Die Abisolierlänge beträgt 8-9 mm.

Verzinnte Leiter sind nicht zulässig. Die erlaubten Leiterquerschnitte sind der Tabelle auf Seite 106 zu entnehmen.

Verdrahtung Verdrahtung der Zündgeräte zwischen Vorschaltgeräten und Lampen nach den Schaltbildern auf den Seiten 98-100 durchführen.

Dabei die Belastungskapazitäten der Verdrahtung beachten. Abstand zu den Lampen so kurz wie möglich auslegen.

ı

7

3

4

5

6

7

3

9

Leistungsumschalter für die Straßenbeleuchtung

Angesichts höherer Wirtschaftlichkeit durch Energiekosteneinsparung der Gemeinden, aber auch im Sinne der Ökologie durch Ressourcenschonung gewinnt die Leistungsreduzierung von Hochdruckentladungslampen immer mehr an Bedeutung.

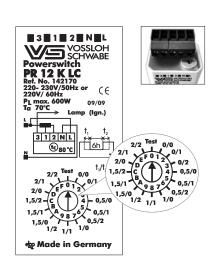
Die Leistungsreduzierung ist bei Natriumdampf-Hochdruck- und Quecksilberdampflampen möglich und wird durch elektronische Steller oder die Umschaltung von Induktivitäten direkt in der Leuchte mittels Leistungsumschaltern realisiert.

Unter der Voraussetzung, dass ein vertretbares Mindestmaß an Beleuchtungsstärke und -gleichmäßigkeit zur Verfügung steht, kann damit zu verkehrsschwachen Zeiten das Beleuchtungsniveau von Außenbeleuchtungsanlagen reduziert werden (z.B. nach DIN 5044 für Straßenbeleuchtung). VS-Leistungsumschalter stellen in Verbindung mit Vorschaltgeräten mit einer geeigneten Anzapfung eine optimale Komplettlösung für die Leistungsreduzierung dar. Dieses VS-System ist von den führenden Lampenherstellern approbiert.

Leistungsumschalter PR 12 K LC – Leistungsreduzierung ohne Steuerphase

Der neue VS-Leistungsumschalter PR 12 K LC verfügt über die Fähigkeit, über die gemessene Brenndauer einer Beleuchtungsanlage, die Zeit des leistungsreduzierten Betriebs zu bestimmen. Somit ist eine aufwendige Anpassung der Leistungsreduzierungszeit an den sich laufend ändernden Tag-Nacht-Zyklus nicht mehr erforderlich; auch eine Sommer-/Winterumstellung entfällt. Er ist somit für den weltweiten Einsatz (regionsunabhängig) konzipiert.

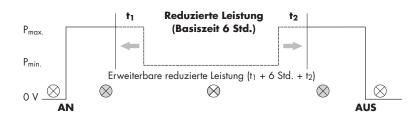
Funktionsweise


Der intelligente Leistungsumschalter PR 12 K LC benötigt keine Steuerleitung, um die Leistung der Lampe zu reduzieren. Er bedient sich der Anzapfung des Vorschaltgeräts. Mittels eines integrierten Mikroprozessors, kann der PR 12 K LC die Brenndauer der Leuchte messen. Diesen Wert gleicht er mit auf dem Chip hinterlegten Daten ab und bestimmt so die Zeit, in der die Leuchte in den leistungsreduzierten Betrieb wechselt. Die Leuchte wird mindestens für 6 Stunden leistungsreduziert (um ca. 40 % der Lampen-Nennleistung bei 50 % Lichtstrom) betrieben. Diese Leistungsreduzierungszeit kann auf bis zu max. 10 Stunden erweitert werden.

Programmierung der Leistungsreduzierungszeit

Der Leistungsumschalter wird mit der Basiseinstellung – Drehkodierschalterstellung Test (Code 0) – ausgeliefert. Nach der Installation der Leuchte muss die gewünschte Reduzierzeit mittels Drehkodierschalter am Leistungsumschalter gewählt werden. Die Reduzierzeit kann auf min. 6 Stunden eingestellt werden und um jeweils bis zu 2 Stunden nach vorne und hinten verlängert werden. Somit ergibt sich eine maximale Reduzierzeit von 10 Stunden.

Folgende Einstellungen am Drehkodierschalter sind möglich:


Einstellung des D	rehkodierschalters	tı	Basisreduzierzeit	t ₂	Gesamte
Position	Zeitangaben	Stunden	Stunden	Stunden	Reduzierzeit (Std.)
0	Test	Werk	seinstellung: 5 Sek. Voll	last, danach L	eistungsreduzierung
1	0/0	0	6	0	6
2	0/1	0	6	1	7
3	0/2	0	6	2	8
4	0,5/0	0,5	6	0	6,5
5	0,5/1	0,5	6	1	7,5
6	0,5/2	0,5	6	2	8,5
7	1/0	1	6	0	7
8	1/1	1	6	1	8
9	1/2	1	6	2	9
А	1,5/0	1,5	6	0	7,5
В	1,5/1	1,5	6	1	8,5
С	1,5/2	1,5	6	2	9,5
D	2/0	2	6	0	8
E	2/1	2	6	1	9
F	2/2	2	6	2	10

Ermittlung der Betriebs-/Reduzierzeit

- Die Einstellung des Drehkodierschalters wird gemäß der gewünschten Reduzierzeit vorgenommen, beispielsweise auf Position 1 (O/O), was einer Leistungsreduzierungszeit von 6 Stunden entspricht.
- In der ersten Nacht wird die Leuchte mittels eines Dämmerungsschalters aktiviert (z. B. um 20.30 Uhr)
 und läuft in den Nennleistungsbetrieb. Nach 4 Stunden (Basisprogrammierung) wird die Leuchte durch
 den Leistungsumschalter um 40 % Lampenleistung umgeschaltet und bleibt bis zum Ausschalten durch den
 Dämmerungsschalter (z. B. um 6.30 Uhr) im leistungsreduzierten Betrieb.
- Der Leistungsumschalter erfasst während dessen die gesamte Brenndauer der Lampe in dieser Nacht (in unserem Beispiel 10 Std.).
- Die erfasste Brenndauer wird nun vom Leistungsumschalter mit abgespeicherten Werten auf dem Mikroprozessor verglichen. Die integrierten Vergleichswerte des Leistungsumschalters bilden die Grundlage für den Startzeitpunkt des leistungsreduzierten Betriebs der Folgenacht. Der "neue" Startzeitpunkt wird nun bis zur Folgenacht im Leistungsumschalter gespeichert.
- In der zweiten Nacht startet die Beleuchtungsanlage gesteuert durch den Dämmerungsschalter und dadurch in Abhängigkeit des Tag/Nacht-Zyklusses der jeweiligen Region und Jahreszeit – zu einem leicht verschobenen Zeitpunkt verglichen mit der ersten Nacht (früher oder auch später, je nach Jahreszeit).
- Der Leistungsumschalter schaltet nun nach in unserem Beispiel 2 Stunden für die gewählten 6 Stunden (Drehkodierschalterposition 1) in den Leistungsreduzierungsbetrieb und danach wieder in den Nennleistungsbetrieb, bevor die Leuchte durch den Dämmerungsschalter das Signal zum Ausschalten erhält.
- Auch in dieser Nacht ermittelt der Leistungsumschalter wieder die gesamte Brenndauer, vergleicht diesen Wert mit seinen abgespeicherten Werten und setzt somit den Anfangszeitpunkt zur Leistungsreduzierung neu
- Durch die Veränderung der Drehkodierschalterstellung kann auf die Dauer der Leistungsreduzierung Einfluss genommen werden. Sie kann nach vorne aber auch nach hinten verlängert werden (siehe Tabelle Seite 108).
- Wird die Drehkodierschalterstellung z. B. 9 (1/2) gewählt, entspricht das einer gesamten Leistungsreduzierungszeit von 9 Stunden (1+6+2). Die Leistungsreduzierung startet somit 1 Stunde früher, als der
 ermittelte Wert der vorherigen Nacht es vorgeben würde, und verlängert die Mindest- reduzierzeit von 6
 Stunden um 2 Stunden.
- Sollte in sehr seltenen Fällen die Brenndauer der Beleuchtungsanlage insgesamt unter 6 Stunden pro Nacht liegen, schaltet der Leistungsumschalter nach 15 Minuten Nennleistung bis zum Ausschalten der Anlage in den leistungsreduzierten Betrieb.

Schaltdiagramm des leistungsreduzierten Betriebs

Deaktivierung des Reduzierbetriebs für eine Nacht

Der Funktionsumfang des Leistungsumschalters PR 12 K LC wurde erweitert. Diese Zusatzfunktion erlaubt dem Betreiber den Reduzierbetrieb der Beleuchtungsanlage auszusetzen. Anwendung findet diese Funktion bei lokalen Festivitäten oder Events (z. B. Stadtfesten), bei denen man aus sicherheitstechnischen Gründen die örtliche Beleuchtung nicht in den Leistungsreduzierungsbetrieb schalten will.

Durch eine einfache Programmierung ist es möglich, alle Leuchten für den darauf folgenden Nachtzyklus im Normalbetrieb (100 %) zu betreiben. Die Programmierung basiert auf einer Einschaltung der Beleuchtungsanlage über einen Zeitraum von min. 60 Sek. und max. 90 Sek. am Tag des Events. Der intelligente Leistungsumschalter erkennt diesen Befehl und setzt den herkömmlichen Reduzierbetrieb für die bevorstehende Nacht auf Null. Der Vorgang der Programmierung kann so oft wie gewünscht wiederholt werden. Hierzu ist das erneute Einschalten der Beleuchtungsanlage von min. 60 Sek. und max. 90 Sek. erforderlich. Die Beleuchtungsanlage wird in jeder Nacht, die der Zusatzprogrammierung folgt, im Normalbetrieb (100 %) betrieben.

2

3

4

5

6

7

8

9

Eine erneute Programmierung zurück zum leistungsreduzierten Betrieb der Anlage ist nicht erforderlich. Der Leistungsumschalter kehrt zur ursprünglichen Programmierung zurück, sobald keine weitere Einschaltung der Beleuchtungsanlage über einen Zeitraum von min. 60 Sek. und max. 90 Sek. erfolgt.

Zum Testen dieser Sonderfunktion ist darauf zu achten, dass der Leistungsumschalter mindestens einen Nachtzyklus in Betrieb war. Erst dann startet der "Lernzyklus", der für die Grundfunktion erforderlich ist. Danach kann entsprechend der oben stehenden Beschreibung die Zusatzfunktion ausgeführt werden.

Leuchtenprüfung

Die Drehkodierschalterstellung Test (Code 0) am Leistungsumschalter dient der Leuchtenprüfung in der Produktion sowie der direkten Funktionsprüfung bei der "nachträglichen" Installation in die Beleuchtungsanlage. Die Lampe wird nach dem Einschalten der Leuchte in den Nennleistungsbetrieb gefahren. Dann erfolgt bereits nach 5 Sekunden die Umschaltung in den Leistungsreduzierungsbetrieb. Diese Umschaltung ist visuell wahrnehmbar, auch wenn die Lampe noch nicht ihre volle Leistung erreicht hat.

Wartungsarbeiten an der Beleuchtungsanlage

Wartungsarbeiten, bei denen die Beleuchtungsanlage kürzer als 2 Stunden eingeschaltet ist, beeinflussen die Programmierung des Leistungsumschalters PR 12 K LC nicht. Sollte die Beleuchtungsanlage jedoch länger als 2 Stunden eingeschaltet sein, wird der Leistungsumschalter PR 12 K LC in der Folgenacht die Beleuchtungsanlage nach 15 Minuten Nennleistungsbetrieb auf Leistungsreduzierung umschalten, um wieder mit der Ermittlung der gesamten Brenndauer der Beleuchtungsanlage zu starten. Für die Ermittlung des Startzeitpunkts der Leistungsreduzierung in den darauf folgenden Nächten legt der Leistungsumschalter wieder die abgespeicherten Vergleichswerte zugrunde.

Umschalteinheiten

Zur Leistungsreduzierung mit elektronischen Betriebsgeräten mit 1–10 V-Schnittstelle

Breites Anwendungsspektrum an Leuchtmitteln

Die VS-Umschalteinheiten dienen der einstufigen Leistungsreduzierung von Leuchtmitteln (FL, CFL, LED, HS, HI und C-HI) über das entsprechende elektronische Vorschaltgerät bzw. den Konverter. Hierzu bedient sich die Umschalteinheit der 1–10 V-Schnittstelle des Betriebsgeräts. Das Haupteinsatzgebiet sind Außenleuchten für Anwendung mit oder ohne vorhandene Steuerphase.

Es können nur Entladungslampen leistungsreduziert werden, die vom Hersteller zur Leistungsreduzierung freigegeben sind. Darüber hinaus können auch stabförmige und kompakte Leuchtstofflampen sowie LEDs gedimmt werden.

Die Ansteuerung der 1 - 10 V-Schnittstelle erfolgt über eine externe Beschaltung des Ausgangs der Umschalteinheit mittels eines entsprechenden Widerstands. Die Widerstandauswahl und -beschaltung erfolgt leuchtenbauseitig und hängt von der gewünschten Höhe der Leistungsreduzierung ab.

Die Umschalteinheit entspricht den Vorschriften der DIN EN 61347 und eignet sich für den Einsatz in Außenleuchten der Schutzklasse I und II.

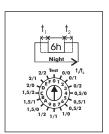
Funktionsweise PR 1-10 V K LC

Die intelligente Umschalteinheit PR 1–10 V K LC benötigt keine Steuerleitung, um die Leistung der Lampe zu reduzieren.

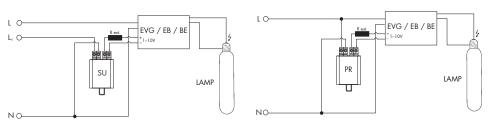
Mittels eines integrierten Mikroprozessors, kann die Umschalteinheit die Brenndauer der Leuchte messen. Diesen Wert gleicht sie mit auf dem Chip hinterlegten Daten ab und bestimmt so die Zeit, in der die Leuchte in den leistungsreduzierten Betrieb wechselt.

Die Leuchte wird mindestens für 6 Stunden leistungsreduziert (um ca. 40 % der Lampen-Nennleistung bei 50 % Lichtstrom) betrieben. Diese Leistungsreduzierungszeit kann auf bis zu max. 10 Stunden erweitert werden.

Programmierung der Leistungsreduzierungszeit der Umschalteinheit PR 1–10 V K LC


Die Umschalteinheit PR 1-10 V K LC wird mit der Basiseinstellung – Drehkodierschalterstellung Test (Code 0) – ausgeliefert.

Nach der Installation der Leuchte muss die gewünschte Reduzierzeit mittels Drehkodierschalter an der Umschalteinheit gewählt werden. Die Reduzierzeit kann auf min. 6 Stunden eingestellt werden und um jeweils bis zu 2 Stunden nach vorne und hinten verlängert werden. Somit ergibt sich eine maximale Reduzierzeit von 10 Stunden.


Folgende Einstellungen am Drehkodierschalter sind möglich:

Einstellung des D	rehkodierschalters	tη	Basisreduzierzeit	t ₂	Gesamte
Position	Zeitangaben	Stunden	Stunden	Stunden	Reduzierzeit (Std.)
0	Test	V	Verkseinstellung: 5 Sek.	Volllast, danc	ach Leistungsreduzierung
1	0/0	0	6	0	6
2	0/1	0	6	1	7
3	0/2	0	6	2	8
4	0,5/0	0,5	6	0	6,5
5	0,5/1	0,5	6	1	7,5
6	0,5/2	0,5	6	2	8,5
7	1/0	1	6	0	7
8	1/1	1	6	1	8
9	1/2	1	6	2	9
А	1,5/0	1,5	6	0	7,5
В	1,5/1	1,5	6	1	8,5
С	1,5/2	1,5	6	2	9,5
D	2/0	2	6	0	8
E	2/1	2	6	11	9
F	2/2	2	6	2	10

Schaltbilder für Umschalteinheiten

SU 1-10 V K

PR 1-10 V K LC

3

4

5

6

7

8

9

Natriumdampf-Hochdrucklampen (HS-Lampen)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszündsy	vstem	Pulserzündsystem			rzündsystem	Versorgungs-	EVG
			strom	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
Lampen	leistung 35 W										
Philips	SDW-T	PG12-1	0,48	Zünd-/ Stabilisierungsgerät	NaH 35II	_	_	_	_	_	_
Sylvania	SHP-SCO/E	E27	0,53	Z 70	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	-	-
Lampen	leistung 50 W										
Aura	ST 50 W	E27	0,80	Z 70	NaH 50	PZ 1000KD20	NaH 50PZT	_	_	VNaH 50	EHXd 50
Aura	SE 50 W	E27	0,80	Z 70	NaH 50	PZ 1000KD20	NaH 50PZT	_	_	VNaH 50	EHXd 50
GE	LU	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
GE	LUXO	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	-	EHXd 50
GE	LUSBY	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
lwasaki	NH/HV/	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Narva	NA	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	-	EHXd 50
Narva	NAD	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Osram	NAV-E/E	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Osram	NAV-E4Y	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Osram	NAV-TSuper 4Y	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Philips	SDW-T	PG 12-1	0,78	Zünd-/ Stabilisierungsgerät	NaH 50II	_	_	-	_	_	_
Philips	SONHg free	E27	0,76	Z 70	NaH 50	PZ 1000KD20		_	_	_	EHXd 50
Philips	SONPro	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Philips	SON-TPlus	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Radium	RNP	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
Sylvania	SHP-S	E27	0,76	Z 70	NaH 50	PZ 1000KD20		_	_	_	EHXd 50
Sylvania	SHP-TS	E27	0,76	Z 70	NaH 50	PZ 1000KD20	_	_	_	_	EHXd 50
	leistung 70 W		-/		1,10,1,0,1						
Aura	ST 70 W	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Aura	SE 70 W	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
BLV	HST-SE	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
GE	LU	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
GE	LURFL	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
GE	LUSBY	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
GE	LUXO	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
lwasaki	NH/HV/	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Narva	NA.	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Narva	NAD	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Osram	NAV-E/E	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Osram	NAV-E4Y	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Osram	NAV-T	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Osram	NAV-T4Y	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Osram	NAV-TSuper 4Y	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Osram	NAV-TSSuper 4Y	RX7s	0,98	Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXd 70
Philips	SONHg free	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Philips	SONPro	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXd 70
Philips	SON-TPlus	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXd 70
Philips	SON-TPro	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXd 70
Radium	RNP-E	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Radium	RNP-T	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Radium	RNP-TS	RX7s	0,98	Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXd 70
Sylvania	SHP	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXd 70
Sylvania	SHP-T	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Sylvania	SHP-TS	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Sylvania	SHP/CO-E	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP-S	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Lampen	leistung 100 W										
Aura	ST 100 W	E40	1,20	Z 250, Z 400	NaHJ100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Aura	SE 100 W	E40	1,20	Z 250, Z 400	NaHJ100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
BLV	HST-SE	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
GE	LU	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
GE	LUSBY	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
GE	LUXO	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
lwasaki	NHF	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Iwasaki	NHTF	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 100

Natriumdampf-Hochdrucklampen (HS-Lampen)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszündsy	1	Pulserzündsystem	1		rzündsystem I	Versorgungs-	EVG
			strom	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
Lampen	leistung 100 W										
Varva	NA.	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
Varva	NAD	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
Osram	NAV-E	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
Osram	NAV-ESuper 4Y	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Osram	NAV-T	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
Osram	NAV-TSuper 4Y	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	_	VNaHJ 100	EHXd 10
Philips	SDW-T	PG12-1	1,30	Zünd-/ Stabilisierungsgerät	NaH 100II	_	_	_	_	_	_
Philips	SONPlus	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Philips	SONPro	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
hilips	SON-THg free	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
hilips	SON-TPlus	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Philips	SON-TPro	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Radium	RNP-E	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Radium	RNP-T	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Sylvania	SHP-S	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Sylvania	SHP-T	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Sylvania	SHP-TS	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
	leistung 150 W	1- +0	1.,=0	2 200, 2 400	. 10. 1, 100	. L . JOURDZO	1. 10.13 100121			,	L. Ma I
Aura	ST 150 W	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 1:
Aura	SE 150 W	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 13
BLV	HST-DE	Fc2	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	EHXd 13
BLV BLV	HST-DE	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	EHXd 13
	HST-SE	E40	1,80	Z 250, Z 400				112 000K	14011) 130		EHXd 1
BLV GE	LU	E40		, , , , , , , , , , , , , , , , , , ,	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	
			1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 13
GE 	LUSBY	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 1.
GE	LUXO	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 13
wasaki	NH	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-		VNaHJ 150	EHXd 13
wasaki	NHT	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 13
Varva	NA	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 15
Narva	NAD	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 15
Osram	NAV-E	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 15
Osram	NAV-E4Y	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 15
Osram	NAV-ESuper 4Y	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 15
Osram	NAV-T	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 15
Osram	NAV-T4Y	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 15
Osram	NAV-TSuper 4Y	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXd 15
Osram	NAV-TSSuper 4Y	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	EHXd 15
Philips	SONHg free	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 15
Philips	SONPlus	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 15
Philips	SONPro	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 15
Philips	SONComfort Pro	E40	1,82	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 15
Philips	SON-THg free	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 15
Philips	SON-TPlus	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 13
Philips	SON-TPro	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 15
Philips	SON-TComfort Pro	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 13
Radium	RNP-E	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 13
Radium	RNP-T	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 13
Radium	RNP-TS	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	EHXd 1
Sylvania	SHP-S	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXd 13
Sylvania		E40	1,80	Z 250, Z 400							EHXd 1
	SHP-T				NaHJ 150	PZ 1000KD20	NaHJ 150PZT			VNaHJ 150	
Sylvania	SHP-TS	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-		VNaHJ 150	EHXd 1.
	leistung 250 W	E40	2.00	7.050 7.400	NI-111 050	D7 1000VD00	NI-111 05007T			VN1-111-050	ELIV LO
Aura A	ST 250 W	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 2
Aura	SE 250 W	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 2
BLV	HST-DE	RX7s	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	EHXd 2
BLV	HST-SE	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
GE	LU	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
GE	LUSBY	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
GE	LUTD	RX7s	2,95	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	EHXd 25
ЭE	LUXO	E40	2,95	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 2

Natriumdampf-Hochdrucklampen (HS-Lampen)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszündsys	item	Pulserzündsystem		Heißwiede	rzündsystem	Versorgungs-	EVG
			strom	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
Lampen	leistung 250 W										
lwasaki	NH	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
lwasaki	NHT	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Narva	NA	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Narva	NAD	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Osram	NAV-E	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-E4Y	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Osram	NAV-ESuper 4Y	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-T	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Osram	NAV-T4Y	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-TSuper 4Y	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Osram	NAV-TS	RX7s	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	EHXd 250
Philips	SONHg free	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SONPlus	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Philips	SONPro	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SONComfort Pro	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Philips	SON-THg free	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Philips	SON-TPlus	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SON-TPro	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Philips	SON-TComfort Pro	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 250
Radium	RNP-E	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Radium	RNP-T	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Sylvania	SHP	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Sylvania	SHP-T	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Sylvania	SHP-S	E40	2,95	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Sylvania	SHP-TS	E40	2,95	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 250
Lampen	leistung 400 W										
Aura	ST 400 W	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
Aura	SE 400 W	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
BLV	HST-DE	RX7s	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	_
BLV	HST-SE	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
GE	LU	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
GE	LUPSL	E40	4,30	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
GE	LUSBY	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
GE	LUTD	RX7s	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	_
GE	LUXO	E40	4,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
lwasaki	NH	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	_
lwasaki	NHT	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Narva	NA	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Narva	NAD	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Narva	NAS	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-E	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	-
Osram	NAV-E4Y	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-ESuper 4Y	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-T	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	-
Osram	NAV-T4Y	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-TSuper 4Y	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-TS	RX7s	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	-
Osram	Plantastar	E40	4,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SONHg free	E40	4,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SONPlus	E40	4,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SONPro	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SONComfort Pro	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	-
Philips	SON-TAgro	E40	4,13	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-T Green Power	E40	4,23	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	-
Philips	SON-THg free	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-TPlus	E40	4,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-TPro	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT		_	VNaHJ 400	-
	SON-TComfort Pro	E40	4,45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT			VNaHJ 400	
Philips			1								
Philips Radium	RNP-E	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-

Natriumdampf-Hochdrucklampen (HS-Lampen)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszündsys	tem	Pulserzündsystem		Heißwieder		Versorgungs-	EVG
			strom	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
.ampen	leistung 400 W										
Sylvania	SHP	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Sylvania	SHP-S	E40	4,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Sylvania	SHP-TS	E40	4,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	_
	SHP-TSGro-Lux	E40	4,00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
	leistung 600 W	1	1							1	
Aura	ST 600 W	E40	6,20	Z 1000	NaHJ 600	PZ 1000KD20	NaHJ 600PZT	-	_	VNaHJ 600	-
Aura	SE 600 W	E40	6,20	Z 1000	NaHJ 600	PZ 1000KD20	NaHJ 600PZT	-	_	VNaHJ 600	-
GE	LUPSL	E40	6,00	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	-
GE	LUXO	E40	6,00	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	_
GE	LU 400V/600W PSL	E40	3,60	Z 1000/400V			NaH 600PZT/400V	_	_	-	-
Varva	NA	E40	6,20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	
Varva	NAS	E40	6,20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	
Osram	NAV-TSuper 4Y	E40	6,20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	_
Osram	Plantastar 600	E40	6,20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	
hilips	SON-TPlus	E40	5,80	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	_
hilips	SON-T Green Power	E40	6,30	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	_
hilips	SON-T 600W/400V Green Power	E40	3,62	Z 1000/400V	NaH 600/400V	PZ 1000/400V A5	NaH 600PZT/400V	_	_	_	-
hilips	SON-T 600W EL 400V Green Power*	E40	2,93-2,24	_	_	_	_	-	_	-	-
adium	RNP-T	E40	6,20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	-
Sylvania	SHP-TS	E40	5,90	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	-	VNaH 600	-
ylvania	SHP-TSGro-Lux	E40	5,50	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	-
ampen	leistung 750 W										
ЭE	LUPSL	E40	7,00	Z 750	NaH 750	PZ 1000KD20	NaH 750/600PZT	_	_	_	-
ЭE	LU 400V/750W PSL	E40	4,40	Z 1000/400V	NaH 750/400V	PZ 1000/400V A5	NaHJ 750PZT	_	-	_	_
ampen	leistung 1000 W										
vura	ST 1000 W	E40	10,60	Z 1000	NaHJ 1000	PZ 1000KD20	_	-	_	-	-
Aura	SE 1000 W	E40	10,30	Z 1000	NaHJ 1000	PZ 1000KD20	_	-	_	-	-
ЭE	LUT	E40	10,60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	_	_
ЭE	LUD	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	-	-
GE	LUTD	RX7s	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	_	_
wasaki	NH	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	-	-
wasaki	NHT	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	-	_	=	_	-
Varva	NA	E40	10,60	Z 1000	NaH 1000, NaH D 1000	PZ 1000KD20	-	_	=	_	-
Varva	NAD	E40	10,60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	-	_	=	-	-
Varva	NAT-VEG 1000/400V	E40	5,70	Z 1000/400V, Z 2000/400V	-	PZ 1000/400V A5	_	-	-	_	-
Osram	NAV-E	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	-	-
Osram	NAV-T	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	_	-
Philips	SONPro	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	_	-
hilips	SON-TPro	E40	10,60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	-	-
hilips	SON-T 1000W EL 400V Green Power**	Kabel	4-3,17	-	-	_	_	-	-	_	-
Radium	RNP-E	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	_	-
Radium	RNP-T	E40	10,30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	_	-
		E 40	10,60	Z 1000	NaH 1000,	PZ 1000KD20	_		_	_	_
Sylvania	SHP-T	E40	10,00	2 1000	NaHJD 1000	12 100011320					

^{*} Spannungsbereich 210 - 275 V

^{**} Spannungsbereich 250 - 315 V

Halogen-Metalldampflampen (HI-Lampen)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszündsys	tem	Pulserzündsystem		Heißwiederz	zündsystem	Versorgungs-	EVG
			strom	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
ampen.	leistung 70 V	v		-							
3LV	HIE	E27	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
BLV	HIE-P	E27	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
BLV	HIT	G12	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
BLV	HIT-DE	RX7s	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
ЭE	ARC	G12	0,95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
GE	ARC	RX7s	0,95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
lwasaki	М	E27	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
wasaki	MT	E27	1,00	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT			VNaHJ 70	EHXc 70
lwasaki	MT	G8.5	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT			VNaHJ 70	EHXc 70
lwasaki	MT	G12	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT		<u> </u>	VNaHJ 70	EHXc 70
Narva	NC	E27; G12	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Varva	NC	RX7s	0,90	Z 250, Z 400		PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 7
		E27			NaHJ 70			112 000K	INGITI 70		
Osram	HQI-E	 		Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HQI-T	G12	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HQI-TS	RX7s	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	MHN-TD	RX7s	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	MHW-TD	RX7s	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Radium	HRI-E	E27	0,95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXc 70
Radium	HRI-T	G12	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Radium	HRI-TS	RX7s	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Sylvania	HSI-MP	E27	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Sylvania	HSI-T	G12	0,95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Sylvania	HSI-TD	RX7s	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Venture	HIE	E27	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXc 70
Venture	HIPE	E27	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Venture	HIT	E27	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Venture	HIT	G12	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXc 70
Venture	MH-DE	RX7s	1,00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Lampen	leistung 100	w							-		
BLV	HIE	E27	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_
BLV	HIE-P	E27	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_
Narva	NC	E27; E40	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_
Osram	HQI-E	E27	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_
Radium	HRI-E	E27	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	I_	VNaHJ 100	_
Sylvania	HSI-MP	E27	1,15	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_
Venture	HIE	E27	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT		<u> </u>	VNaHJ 100	_
Venture	HIPE	E27; E40	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_
Venture	HIT	E27; E40	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT			VNaHJ 100	
	leistung 150		11,10	2 230, 2 400	India 100	IZ TOOOKDZO	INGIN TOOLET	_	<u> </u>	TAINGLE TOO	_
BLV	HIE	E27	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT			VNaHJ 150	EHXc 15
BLV	HIE-P	E27	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20			_		EHXc 15
BLV	HIT						NaHJ 150PZT			VNaHJ 150	
		G12; E27; E40		Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	H7 1000K	Naul 150	VNaHJ 150	EHXc 15
BLV	HIT-DE	RX7s-24	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
GE	ARC	G12	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	- NI 111 150	VNaHJ 150	EHXc 15
GE	ARC	RX7s-24	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 13
lwasaki	M	E27	1,90	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 13
wasaki	MT	E27	1,90	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 1
wasaki	MT	G12	1,90	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 1.
lwasaki	MTD	RX7s	1,90	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 13
Narva	NC	E27; E40; G12	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 1
Varva	NC	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 1
Osram	HQI-E	E27	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	EHXc 1.
Osram	HQI-R	Stecker	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	-
	HQI-T	G12	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	EHXc 1.
Osram	HQI-TS	RX7s-24	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 13
Osram Osram		I	1.00		NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 1
	MHN-TD	RX7s	1,80	Z 250, Z 400	I Nullij 150	12 100011020			1 101 13 100	71 40113 150	
Osram Philips		RX/s RX/s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 13
Osram Philips Philips	MHN-TD MHW-TD	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT			VNaHJ 150	
Osram	MHN-TD			-							EHXc 13 EHXc 13

Halogen-Metalldampflampen (HI-Lampen)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszündsyst	em	Pulserzündsystem		Heißwiederz	zündsystem	Versorgungs-	EVG
			strom	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
ampen	leistung 150	W									
Sylvania	HSI-MP	E27	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
ylvania	HSI-T	G12	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
sylvania	HSI-TD	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
enture	HIE	E27	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
/enture	HIPE	E27; E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
/enture	HIT	E27; E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
/enture	HIT	G12	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
/enture	MH-DE	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
	leistung 250		1,00	Z 230, Z 400	Tradity 150	12 1000KB20	11401111130121	TIZ TOOOK	I varij 150	1114dily 130	ELLING TO
BLV	HIE	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT			VNaHJ 250	
3LV	HIT	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
		Fc2		· ·	1			H7 1000V	N=H1 250		-
3LV	HIT-DE	.	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
GE a.s	ARC250/T	E40	2,75	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
GE .	ARC250/TD	Fc2	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Varva	NC	E40	2,15	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	-	VNaHJ 250	-
Varva	NCP	E40	2,15	_	_	PZI 1000/1	Q 250	_	_	-	_
Osram	HQI-E	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HQI-E/P	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HQI-T	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	-
Osram	HQI-TS	Fc2	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Philips	HPI Plus	E40	2,20	_	_	PZI 1000/1	Q 250	_	_	-	_
Philips	HPI-T	E40	2,15	_	_	PZI 1000/1	Q 250	_	_	_	_
Philips	MHN-TD	Fc2	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Radium	HRI-E	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	<u> </u> _	VNaHJ 250	_
Radium	HRI-T	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	1_	VNaHJ 250	_
Radium	HRI-TS	Fc2	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Sylvania	HSI-HX	E40	2,10	_	_	PZI 1000/1	Q 250	_	_	- VI (di ij 250	_
	HSI-T	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT			VNaHJ 250	
Sylvania	HSI-TD	Fc2	3,00	Z 250, Z 400		PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250		
Sylvania				2 230, 2 400	NaHJ 250			112 1000K	INGITI 230	VNaHJ 250	_
Sylvania	HSI-THX	E40	2,10	7.050 7.400	-	PZI 1000/1	Q 250	_	-	-	_
Sylvania	HSI-TSX	E40	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	_
Sylvania	HSI-SX	E40	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	-	VNaHJ 250	-
/enture	HIE	E40	3,10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	-	VNaHJ 250	-
/enture	HIPE	E40	3,10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	-
/enture	HIT	E40	3,10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
/enture	HITEURO	E40	2,10	-	-	PZI 1000/1	Q 250	-	_	_	-
/enture	MH-DE	Fc2	3,10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Lampen	leistung 400	W									
BLV	HIE	E40	4,00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
3LV	HIT	E40	4,00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	-	VNaHJ 400	-
GE	ARC400/T	E40	4,35	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	-	VNaHJ 400	_
Varva	NC	E40	3,25	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	-	VNaHJ 400	_
Varva	NCP	E40	3,25	_	_	PZI 1000/1	Q 400	_	_	_	_
Osram	HQI-E	E40	3,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Osram	HQI-E/P	E40	3,50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT			VNaHJ 400	
Osram	HQI-T	E40	3,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT			VNaHJ 400	
								H7 1000K	N=U1 400		_
Osram Distrib	HQI-TS	Fc2	3,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 1000K	NaHJ 400	VNaHJ 400	-
hilips	HPI-T	E40	3,40	-	-	PZI 1000/1	Q 400	-	-	-	-
Philips	MH-T	E40	3,40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	HRI-BT	E40	4,00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
ladium.	HRI-E	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
ladium.	HRI-T	E40	4,60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
ladium.	HRI-TS	Fc2	4,10	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 1000K	NaHJ 400	VNaHJ 400	-
Sylvania	HSI-HX	E40	3,40	-	-	PZI 1000/1	Q 400	-	-	_	-
	HSI-T	E40	4,00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	-	VNaHJ 400	-
Sylvania	1	E40	3,40	=	_	PZI 1000/1	Q 400	_	_	_	_
	HSI-THX		4 - 2							1,4,1,1,1,400	_
Sylvania	HSI-THX HSI-TSX	E40	4,40	Z 400, Z 1000	NaHI 400	PZ 1000KD20	[NaH] 400PZT	_	I-	[VNaHI 400	
Sylvania Sylvania	HSI-TSX	E40 F40	4,40	Z 400, Z 1000 Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400 VNaHJ 400	_
		E40 E40 E40	4,40 4,40 3,20	Z 400, Z 1000 Z 400, Z 1000 Z 400, Z 1000	NaHJ 400 NaHJ 400 NaHJ 400	PZ 1000KD20 PZ 1000KD20 PZ 1000KD20	NaHJ 400PZT NaHJ 400PZT NaHJ 400PZT	_	_	VNaHJ 400 VNaHJ 400 VNaHJ 400	_

Halogen-Metalldampflampen (HI-Lampen)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszündsys	item	Pulserzündsystem		Heißwiederz	ündsystem	Versorgungs-	EVG
			strom	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
ampen	leistung 400	w									
enture	HIT	E40	3,20	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	-
enture	HITEURO	E40	3,20	_	_	PZI 1000/1	Q 400	_	_	_	_
ampen	leistung 600	W									
Osram	HQI-TM	G22	6,10	Z1000	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	_
Radium	HRI-TM	G22	6,10	Z1000	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	_
Lampen	leistung 1000	w	:								
BLV	HIT	E40	9,50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	_	_	_	_
GE	SPL 1000	E40	9,50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	_	_	_	_
Narva	NC	E40	8,25	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	_	_	_	_
Narva	NCP	E40	8,25	_	_	PZI 1000/1	Q 1000	_	_	_	
Narva	NCT/400V	E40	4,80	Z 1000/400V; Z 2000/400V	NaHJ 1000	_	-	-	_	-	-
Osram	HQI-TM	G22	9,50	Z1000	NaHJ 1000	PZ 1000KD20					
Osram	HQI-E	E40	9,50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	_	_	_	_
Osram	HQI-T	E40	9,50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	_	_	_	
Osram	HQI-TS	Kabel	9,60	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20		HZ 1000K	NaHJ 1000	_	
Philips	HPI-T	E40	8,25	_ 1000, 2 2000		PZI 1000/1	Q 1000		_		
Philips	MHN-LA	Kabel	9,30	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	Q 1000	HZ 1000K	NaHJ 1000	_	
Radium	HRI-T	E40	9,50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	-	112 10008	14011) 1000	-	
	HRI-TM	G22	9,50	Z 1000, Z 2000		PZ 1000KD20	-	_		-	
Radium					NaHJ 1000	PZ 1000KD20 PZ 1000KD20		U7 1000У	NI=HI 1000		
Radium	HRI-TS	Kabel	9,60	Z 1000, Z 2000	NaHJ 1000		- 1000	HZ 1000K	NaHJ 1000	-	-
Sylvania	HSI-THX	E40	8,25	7 1000 7 0000	-	PZI 1000/1	Q 1000	-	-	-	-
Venture	HIT	E40	9,15	Z 1000, Z 2000	NaHJ1000	PZ 1000KD20	-	_	-	-	-
Venture	MBIL	RX7s	4,40	Z 2000/400V	_	_	-	HZ 2000K/ 400V	_	-	_
Lampen	leistung 2000	w									
GE	SPL 2000/T	E40	10,30	Z 2000/400V	JD 2000	-	_	_	_	_	_
Osram	HQI-T/D	E40	10,30	Z 2000/400V	JD 2000	=	=	_	_	_	-
Osram	HQI-TSN/3 80V	E40	8,80	_	_	-	QJ 2000	_	_	_	-
Osram	HQI-TS	Kabel	11,30	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V	JD 2000	-	-
Osram	HQI-TS	Kabel	12,2	Z 2000/400V	JD 2000II/12,2	_	_	_	_	_	_
Philips	HPI-T 220V	E40	16,50	_	_	PZI 1000/1	JD 2000 I	_	_	_	_
Philips	HPI-T 380V	E40	9,10	=	_	-	QJ 2000	_	_	_	_
Philips	MHN-LA	Kabel	9,6-10,3	Z 2000/400V	JD 2000	_		HZ 2000K/ 400V	JD 2000	-	-
Philips	MHN-SA	X83OR	11,30	Z 2000/400V	JD 2000	_		HZ 2000K/ 400V	JD 2000		-
Philips	MHN-SB 400V	Kabel	11,30	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V	_		-
Radium	HRI-T 230V	E40	16,50 (2x8,25)	-	-	PZI 1000/1	JD 2000 I	=	-	-	-
Radium	HRI-T/D	E40	10,30	Z 2000/400V	JD 2000						
Radium	HRI-TS	E40	10,30	Z 2000/400V	JD 2000		-	_	_	-	_
Radium	HRI-TS	Kabel	11,30	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V*	JD 2000	_	-
Sylvania	HSI-T	E40	9,00	Z 2000/400V	JD 2000	_	_	_	_	-	-
Sylvania	HSI-TD	Kabel	11,30	Z 2000/400V	JD 2000	_	-	HZ 2000K/ 400V	JD 2000	-	-
	мн	Kabel	10,30	Z 2000	JD 2000	_	_	_	_	_	_
/enture											
Venture Venture		RX7s	10.30	IZ 2000	HD 2000	I-	I-	I —	I —	1-	
enture	MBIL	RX7s	10,30	Z 2000	JD 2000	<u> -</u>	-	_	-	-	_
/enture			18,00	Z 3500/400V	JD 3500	_		_			

^{*} Nicht geeignet für HRI-TS 2000W/N/L; HQI-TS 2000W/N/L

Keramikbrennerlampen (C-HI)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszünd	system	Pulserzündsystem		Heißwiederzü	ndsystem	Versorgungs-	EVG
			strom	Zündgerät*	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
.ampen	leistung 20 W					-					·
ЭE	CMH20MR16	GX10	0,21	_	_	_	_	_	_	_	EHXc 20
ЭE	CMH20PAR	E27	0,23	_	_	_	_	_	_	_	EHXc 20
ЭE	CMH20T	G12	0,23	_	_	_	_	_	_	_	_
GE .	СМН20Т	GU6.5	0,21	_	_	_	_	_	_	_	EHXc 20
GE	CMH20TC	G8.5	0,23	_	_	_	_	_	_	_	EHXc 20
GE	CMH20TC	G12	0,23	_	_	_	_	_	_		EHXc 20
Osram	HCI-PAR	E27	0,22								EHXc 20
Osram	HCI-R111	GX8.5	0,22			_					EHXc 20
Osram	HCI-TF	GU6.5	0,22			-					EHXc 20.329
		G8.5	0,22	=	_	-	_	_	-	_	
Osram	HCI-TC			_	-	-	-	_	-	-	EHXc 20.329
Philips	CDM-TM	PGJ5	0,22	_	-	-	_	_	-	-	-
Philips	CDM-R	GX10	0,22	_	-	-	-	_	-	-	EHXc 20.329
Radium	RCC-TC	G8.5	0,22	-	_	_	_	_	_	_	EHXc 20.329
.ampen	leistung 35 W									_	
Aura	TT 35 W	E27	0,45	Z250, Z400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	_
3LV	C-HIT	G12	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
ЭE	CMH35PAR	E27	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
ЭE	CMH35T	G12	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
GE	CMH35TC	G8.5	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	_	VNaHJ 35	EHXc 35
Osram	HCI-E/P	E27	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	_	VNaHJ 35	EHXc 35
Osram	HCI-PAR	E27	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Osram	HCI-R111	GX8.5	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Osram	HCI-T	G12	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Osram	HCI-TC	G8.5	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT			VNaHJ 35	EHXc 35
Osram	HCI-TF	GU6.5	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
				2 230, 2 400	INGITI 33	FZ 1000KD20	INGLIJ 33FZT	_	-	VINGITI 33	
anasonic		GU8.5	0,44	7.050 7.400	-	- -	- N. I.II.O CD 7T	_	_	-	EHXc 35
Philips	CDM-R	E27	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
Philips	CDM-R111	GX8.5	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	-	VNaHJ 35	EHXc 35
Philips	CDM-T	G12	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Philips	CDM-TC	G8.5	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Philips	CDM-R	GX10	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	-	_	EHXc 35G
Radium	RCC-PAR	E27	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	-	VNaHJ 35	EHXc 35
Radium	RCC-T	G12	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	-	VNaHJ 35	EHXc 35
Radium	RCC-TC	G8.5	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Sylvania	CMI-T	G12	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Sylvania	CMI-TC	G8.5	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
/enture	CMH35/T	G12	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
/enture	CMH35/TC	G8.5	0,50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
	leistung 50 W		-/		1.10.13.00		1 0				
Aura	TT 50 W	E27	0,60	Z250, Z400	NaH 50	PZ1000KD20	NAH50PZT			VNaH 50	EHXd 50
	CDM-TC Elite		0,59	Z 70		121000KD20	TVALISOI ZI			VNaH 50	
Philips Philips	CDM-TC Elife	G8.5 G12	0,59	Z 70	NaH 50 NaH 50	Ī-	_	_		VNaH 50	EHXc 50 EHXc 50
	-	U12	U,3/	Z / U	INGILI DU	_	-	_	-	VINGIT SU	ELLYC 20
	leistung 70 W	507	10.00	7.050 7	N. 1	D7 100000	N. 11: 30			1011111111	EL OVER E
Aura	TT 70 W	E27	0,80	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
BLV	C-HIT	G12	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
BLV	C-HIT-DE	RX7s	0,90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH70E	E27	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH70PAR	E27	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
ЭE	СМН70Т	G12	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
ЭE	CMH70TC	G8.5	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
ЭE	CMH70TD	RX7s	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
ЭE	CMH70TT	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
Osram	HCI-E/P	E27	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
	HCI-PAR	E27	0,97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
			0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT		_	VNaHJ 70	EHXc 70
Osram		1(-XXX 5			i vui ij / U	1 - 1 OUUNDZU	privarij / UFZT			YI NUI IJ / U	LI INC / U
Osram Osram	HCI-R111	GX8.5		· ·	NaHL70	DZ 1000KD00	NaHI ZODZT			VNIaHI 70	EHV. 70
Osram Osram Osram	HCI-R111 HCI-T	G12	0,96	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Osram Osram Osram Osram	HCI-R111 HCI-T HCI-T/P	G12 E27	0,96	Z 250, Z 400 Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXc 70
Osram Osram Osram	HCI-R111 HCI-T	G12	0,96	Z 250, Z 400				- - - HZ 600K	- - - NaHJ 70		

Keramikbrennerlampen (C-HI)

Hersteller	Bezeichnung	Sockel	Lampen-	Überlagerungszünd	system	Pulserzündsystem	1	Heißwiederzi	indsystem	Versorgungs-	EVG
			strom	Zündgerät*	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
ımpen	eistung 70 W										
anasonic		GU8.5	0.86	_	_	_	_	-	_	_	EHXc 70
nilips	CDO-ET	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
hilips	CDO-TT	E27	1,00	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
hilips	CDM-R	E27	0,97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
hilips	CDM-R111	GX8.5	0,97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
hilips	CDM-T	G12	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
hilips	CDM-TC	G8.5	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
hilips	CDM-TD	RX7s	0,97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	CDM-TP	PG12-2	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Radium	RCC-PAR	E27	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Radium	RCC-T	G12	0,96	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Radium	RCC-TC	G8.5	0,96	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Radium	RCC-TS	RX7s	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Sylvania	CMI-T	G12	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Sylvania	CMI-TC	G8.5	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Sylvania	CMI-TD	RX7s	0,98	Z 250, Z 400	NaHI 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
/enture	CMH70/T	G12	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
/enture	CMH70/TC	G8.5	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
/enture	CMH70/TD	RX7s	0,98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHI 70	EHXc 70
/enture	CMH70/TT	E27	0,98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
	eistung 100 W		1-,, 0		,,,	50000020	1 9 / 5/12/				
Aura	TT 100 W	E40	1,30	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_		VNaHJ 100	EHXd 100
GE .	CMH100PAR	E26	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_ LIING TO
GE	LUCALOX XO	E40	1,11	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_		VNaHJ 100	EHXc 100
Osram	HCI-E/P	E27	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT			VNaHJ 100	LI IXC TO
Osram	HCI-T/P	E27	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT			VNaHJ 100	_
Osram	HCI-T	G12	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT			VNaHJ 100	EHXc 100
Philips	CDO-ET	E40	1,10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_		VNaHJ 100	LI IXC TO
Philips	CDO-TT	E40	1,20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_		VNaHJ 100	
Philips	CDM-T Elite	G12	1,14	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_		VNaHJ 100	EHXc 100
	eistung 150 W		1,14	2 230, 2 400	INGI I TOO	12 TOOOKD20	INGITY TOOLET	_	-	VINGITY TOO	LI IXC TO
	TT 150 W	E40	1,70	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT			VNaHJ 150	EHXd 15
Aura BLV	C-HIT	G12	1,85	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_		VNaHJ 150	EHXc 150
3LV	C-HIT-DE	RX7s-24	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_		VNaHJ 150	LI IAC 134
GE GE	CMH150T	G12	1,85	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT			VNaHJ 150	EHXc 150
GE	CMH150TD	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHI 150PZT	_		VNaHJ 150	EHXc 150
Osram	HCI-E/P	E27	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_			EHXc 150
	HCI-T	G12	1,80	Z 250, Z 400		PZ 1000KD20	NaHI 150PZT	_	-	VNaHJ 150	EHXc 150
Osram		E27		·	NaHJ 150		NaHI 150PZT	_	-	VNaHJ 150	
Osram	HCI-T/P HCI-TS		1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	-	HZ 1000K	- NI-111 150	VNaHJ 150	EHXc 150
Osram		RX7s-24		Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	TZ 1000K	NaHJ 150	VNaHJ 150	- I - I - I - I - I - I - I - I - I - I
Osram Ok:l:	HCI-TT	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	EHXc 150
hilips	CDO-ET	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	EHXc 150
hilips	CDO-TT	E40	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
hilips	CDM-T	G12		Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	- N. I.II. 150	VNaHJ 150	EHXc 150
hilips	CDM-TD	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
hilips	CDM-TP	PGX12-2	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	- 10001	- N. I.II. 3.50	VNaHJ 150	EHXc 150
Radium	RCC-T	G12	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
Radium	RCC-TS	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
Sylvania	CMI-T	G12	1,82	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
Sylvania ,	CMI-TD	RX7s-24	1,82	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	-
enture	CMH150/T	G12	1,85	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
enture.	CMH150/TD	RX7s	1,80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
	eistung 250 V	Ť T	1								
\ura	TT 250 W	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
ЭE	CMH250E	E40	2,70	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	
GE	CMH250P	E40	2,70	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
ЭE	CMH-TT	E40	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	_
Osram	HCI-E	E40	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	_
Osram	HCI-TC	E40	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HCI-TM	G22	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
				Z 250, Z 400							

Keramikbrennerlampen (C-HI)

Hersteller Bezeichnung		Sockel	Lampen-	Überlagerungszündsystem		Pulserzündsystem		Heißwiederzündsystem		Versorgungs-	EVG
			strom	Zündgerät*	Vorschaltgerät	Zündgerät	Vorschaltgerät	Zündgerät	Vorschaltgerät	einheit	
Lampenl	eistung 250 V	V									
Philips	CDO-TT	E40	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Philips	CDM-T	G12	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Radium	RCC-E	E40	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Radium	RCC-T	E40	2,80	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Radium	RCC-TM	G22	2,90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Radium	RCC-TS	Fc2	3,00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Lampenl	eistung 400 V	V									
Aura	TT 400 W	E40	4,40	Z 400	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
GE	CMHTT	E40	4,60	Z 400M, Z 400	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Osram	HCI-TM	G22	4,45	Z 400M, Z 400	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_

 $^{^{\}star}$ Z 400 M VS-Power Zündgerät ist nicht geeignet für C-HI Lampen

Quecksilberdampf-Hochdrucklampen (HM-Lampen)

Hersteller	Bezeichnung	Sockel	Lampenstrom	Betriebsgeräte	Kondensator
				Vorschaltgeräte (Zündgerät nicht erforderlich)	bei 50 Hz
ampenleistung					
ЭE	H 50	E27, B22d	0,62	Q 50, Q 80/50	7 μF
wasaki	HF 50 PD	E27	0,62	Q 50, Q 80/50	7 µF
Varva	NF 50	E27	0,62	Q 50, Q 80/50	7 μF
Osram	HQL 50	E27	0,62	Q 50, Q 80/50	7 µF
Philips	HPL 50	E27	0,62	Q 50, Q 80/50	7 μF
Radium	HRL 50	E27	0,62	Q 50, Q 80/50	7 μF
Sylvania	HSL 50	E27	0,62	Q 50, Q 80/50	7 µF
ampenleistung	80 W				
ЭE	H 80	E27, B22d-3*	0,80	Q 80, Q 80/50, Q 125/80	8 µF
wasaki	HF 80 PD	E27	0,80	Q 80, Q 80/50, Q 125/80	8 µF
Varva	NF 80	E27	0,80	Q 80, Q 80/50, Q 125/80	8 μF
Osram	HQL 80	E27	0,80	Q 80, Q 80/50, Q 125/80	8 µF
hilips	HPL 80	E27	0,80	Q 80, Q 80/50, Q 125/80	8 µF
adium	HRL 80	E27	0,80	Q 80, Q 80/50, Q 125/80	8 µF
ylvania	HSL 80	E27	0,80	Q 80, Q 80/50, Q 125/80	8 µF
ampenleistung			1 ,		
E	H 125	E27, B22d-3*	1,15	Q 125, Q 125/80	10 µF
wasaki	HF 125 PD	E27	1,15	Q 125, Q 125/80	10 µF
Varva	NF 125	E27	1,15	Q 125, Q 125/80	10 µF
Osram	HQL 125	E27, E40	1,15	Q 125, Q 125/80	10 µF
hilips	HPL 125	E27	1,15	Q 125, Q 125/80	10 µF
adium	HRL 125	E27	1,15	Q 125, Q 125/80	10 µF
iylvania	HSL 125	E27, B22d-3*	1,15	Q 125, Q 125/80	10 µF
	·	LZ/ , DZZQ-3	1,10	Q 120, Q 120/00	1 ο μι
ampenleistung SE	H 250	E40	2,15	Q 250, U-Q 250/150	18 µF
			,		
wasaki	HF 250 PD	E40	2,15	Q 250, U-Q 250/150	18 µF
Varva	NF 250	E40	2,15	Q 250, U-Q 250/150	18 µF
Osram	HQL 250	E40	2,15	Q 250, U-Q 250/150	18 µF
hilips	HPL 250	E40	2,15	Q 250, U-Q 250/150	18 µF
adium	HRL 250	E40	2,15	Q 250, U-Q 250/150	18 µF
iylvania	HSL 250	E40	2,15	Q 250, U-Q 250/150	18 µF
.ampenleistung					
∋E	H 400	E40	3,25	Q 400, U-Q 400/250	25 µF
wasaki	HF 400 PD	E40	3,25	Q 400, U-Q 400/250	25 µF
Varva	NF 400	E40	3,25	Q 400, U-Q 400/250	25 μF
Osram	HQL 400	E40	3,25	Q 400, U-Q 400/250	25 μF
hilips	HPL 400	E40	3,25	Q 400, U-Q 400/250	25 μF
!adium	HRL 400	E40	3,25	Q 400, U-Q 400/250	25 μF
ylvania	HSL 400	E40	3,25	Q 400, U-Q 400/250	25 µF
ampenleistung	700 W				
ЭE	H 700	E40	5,45	Q 700	40 µF
wasaki	HF 700 PD	E40	5,40	Q 700	40 µF
Varva	NF 700	E40	5,40	Q 700	40 µF
Osram	HQL 700	E40	5,40	Q 700	40 µF
hilips	HPL 700	E40	5,40	Q 700	40 µF
adium	HRL 700	E40	5,40	Q 700	40 µF
	HSL 700	E40	5,40	Q 700	40 μF
vlvania		1=	1=1		1 1- 11
	1000 W				
ampenleistung		F40	7 50	Q 1000	60 uE
ampenleistung E	H 1000	E40	7,50 7,50	Q 1000	60 μF
ampenleistung BE wasaki	H 1000 HF 1000 PD	E40	7,50	Q 1000	60 µF
. ampenleistung GE wasaki Varva	H 1000 HF 1000 PD NF 1000	E40 E40	7,50 7,50	Q 1000 Q 1000	60 μF 60 μF
ampenleistung BE wasaki Narva Osram	H 1000 HF 1000 PD NF 1000 HQL 1000	E40 E40 E40	7,50 7,50 7,50	Q 1000 Q 1000 Q 1000	60 μF 60 μF 60 μF
sylvania .ampenleistung GE wasaki Narva Osram Philips Radium	H 1000 HF 1000 PD NF 1000	E40 E40	7,50 7,50	Q 1000 Q 1000	60 μF 60 μF

^{*} Keine VS-Fassungen für Sockel B22d-3 im Programm

Energieeffizienz-Klassifizierung

Mit der Verordnung (EG) Nr. 245/2009 der Kommission vom 18. März 2009 zur Durchführung der Richtlinie 2005/32/EG des Europäischen Parlaments und des Rates im Hinblick auf die Festlegung von Anforderungen an die umweltgerechte Gestaltung von Leuchtstofflampen ohne eingebautes Vorschaltgerät, Hochdruckentladungslampen sowie Vorschaltgeräte und Leuchten zu ihrem Betrieb und zur Aufhebung der Richtlinie 2000/55/EG des Europäischen Parlaments und des Rates (soweit der offizielle Titel), ist in der EU ein rechtlicher Rahmen geschaffen worden, der die Grundlage zum Einsatz von effizienten Produkten in der Beleuchtungstechnik festlegt.

Die Verordnung ist in erster Linie auf die Dienstleistungsbeleuchtung ausgerichtet, sie ist aber produktorientiert und somit anwendungsunabhängig. Die Effizienz- und Arbeitsweiseanforderungen (Anforderungen der Leistungsmerkmale) betreffen Leuchtstofflampen ohne integrierte Vorschaltgeräte, Hochdruckentladungslampen und Vorschaltgeräte und Leuchten, die diese Lampen betreiben können. Eine Kurzübersicht ist in der folgenden Tabelle (Auszug aus dem CELMA-Guide) wiedergegeben.

Stufe	Anforderungen an					
1	Vorschaltgeräte	Keine speziellen Anforderungen.				
13.04.2010						
Zwischenstufe 13.09.2010	Leuchten	Nach 18 Monaten: Technische Informationen müssen bereitgestellt werden, auf der Webseite und in der Dokumentation der Leuchten (für Leuchten > 2.000 Lumen).				
2 13.04.2012	Vorschaltgeräte	Einführung von Grenzwerten der Effizienz für HID-Vorschaltgeräte und deren Kennzeichnung:				
		P < 30 W - η≥65 %				
		30 < P < 75 W - η≥75 %				
		75 < P < 105 W - η≥ 80 %				
		105 < P < 405 W - η≥ 85 %				
		P > 405 W - η≥ 90 %				
		Kennzeichnung der HID-Vorschaltgeräte mit EEI=A3				
	Leuchten	Leuchten müssen so konstruiert sein, dass Vorschaltgeräte der 3. Stufe eingebaut werden können. Ausnahmen: Leuchten > IP4X				
spätestens zum Überarbeitung der Verordnung		ng der Verordnung				
13.04.2014	Die technische Entwicklung und die gesammelten Erfahrungen bei der Umsetzung der Verord bei der Überarbeitung eingebracht werden.					
3	Vorschaltgeräte	Die Energieeffizienz-Grenzwerte werden erhöht:				
13.04.2017		P < 30 W - η≥78 %				
		30 < P < 75 W - η≥ 85 %				
		75 < P < 105 W - η≥ 87 %				
		105 < P < 405 W - η≥ 90 %				
		P > 405 W - η ≥ 92 %				
		Kennzeichnung der HID-Vorschaltgeräte mit A2				
	Leuchten	 Alle Leuchten müssen so konstruiert sein, dass Vorschaltgeräte der 3. Stufe eingebaut werden können. 				